用數(shù)學(xué)歸納法證明:
1
1×3
+
1
3×5
+…+
1
(2n-1)(2n+1)
=
n
2n+1
,n∈N*
考點:數(shù)學(xué)歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:利用數(shù)學(xué)歸納法的證明標(biāo)準(zhǔn),驗證n=1時成立,假設(shè)n=k是成立,證明n=k+1時等式也成立即可.
解答: 證明:(1)當(dāng)n=1時,左邊=
1
3
,右邊=
1
3
,等式成立.--(3分)
(2)假設(shè)當(dāng)n=k時,等式成立,即
1
1×3
+
1
3×5
+…+
1
(2k-1)(2k+1)
=
k
2k+1
-----(6分)
那么,當(dāng)n=k+1時,左邊=
1
1×3
+
1
3×5
+…+
1
(2k-1)(2k+1)
+
1
(2k+1)(2k+3)

=
k
2k+1
+
1
(2k+1)(2k+3)
=
k+1
2k+3
,
這就是說,當(dāng)n=k+1時等式也成立.----------------------(13分)
根據(jù)(1)和(2),可知等式對任何n∈N*都成立.-----------------------(14分)
點評:本題是中檔題,考查數(shù)學(xué)歸納法的應(yīng)用,注意數(shù)學(xué)歸納法證明時,必須用上假設(shè).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)在x=4時取最小值-3,且它的圖象與x軸的兩個交點間的距離為6,求這個二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2-4x,(0≤x≤3)
x2+6x,(-2≤x≤0)
,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1中,面A1B1C1D1中心為O1
(1)求證:DO1∥面AB1C;
(2)求異面直線DO1與B1C所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對a、b>0,a≠b,已知下列不等式成立:
①2ab<a2+b2;②ab2+a2b<a3+b3;
③ab3+a3b<a4+b4;④ab4+a4b<a5+b5
(1)用類比的方法寫出
 
<a6+b6
(2)若a、b>0,a≠b,證明:ab2+a2b<a3+b3;
(3)將上述不等式推廣到一般情形,請寫出你所得結(jié)論的數(shù)學(xué)表達(dá)式(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下表:
            
問:(1)此表第n行的最后一個數(shù)是多少?
(2)此表第n行的各個數(shù)之和是多少?
(3)2010是第幾行的第幾個數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是總體的一個樣本頻率分布直方圖,且在[15,18)內(nèi)頻數(shù)為8,在[12,15)內(nèi)的小矩形面積為0.1.
(1)求在[12,15)內(nèi)的頻數(shù);
(2)求樣本在[18,33)內(nèi)的頻率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=x2+ax+3在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-i)2
1+i
=
 

查看答案和解析>>

同步練習(xí)冊答案