分析 求出橢圓上的點與圓心的最大距離,加上半徑,即可得出P,Q兩點間的最大距離.
解答 解:設(shè)橢圓上的點為(x,y),則
∵圓x2+(y-6)2=2的圓心為(0,6),半徑為$\sqrt{2}$,
∴橢圓上的點(x,y)到圓心(0,6)的距離為 $\sqrt{{x}^{2}{+(y-6)}^{2}}$=$\sqrt{1{0(1-y)}^{2}{+(y-6)}^{2}}$=$\sqrt{-{9(y+\frac{2}{3})}^{2}+50}$≤5$\sqrt{2}$,
∴P,Q兩點間的最大距離是5$\sqrt{2}$+$\sqrt{2}$=6$\sqrt{2}$.
故答案為:6$\sqrt{2}$.
點評 本題考查橢圓、圓的方程,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
認為作業(yè)多 | 認為作業(yè)不多 | 合計 | |
喜歡玩手機游戲 | 18 | 2 | |
不喜歡玩手機游戲 | 6 | ||
合計 | 30 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com