6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個(gè)“金魚”圖需要火柴的根數(shù)為32.

分析 由圖形間的關(guān)系可以看出,每多出一個(gè)小金魚,則要多出6根火柴棒,則組成不同個(gè)數(shù)的圖形的火柴棒的個(gè)數(shù)組成一個(gè)首項(xiàng)是8,公差是6的等差數(shù)列,寫出通項(xiàng),求出第n項(xiàng)的火柴根數(shù).

解答 解:∵第一個(gè)圖中有8根火柴棒組成,
第二個(gè)圖中有8+6個(gè)火柴棒組成,
第三個(gè)圖中有8+2×6個(gè)火柴組成,
以此類推
組成n個(gè)系列正方形形的火柴棒的根數(shù)是8+6(n-1)
∴第5個(gè)圖中的火柴棒有32個(gè),
故答案為:32.

點(diǎn)評(píng) 本題考查歸納推理,考查等差數(shù)列的通項(xiàng),解題的關(guān)鍵是看清隨著小金魚的增加,火柴的根數(shù)的變化趨勢(shì),看出規(guī)律.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$,Sn=$\sum_{k=1}^{n}$ak,則S2009=$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個(gè)零點(diǎn).
(1)求a的取值范圍;
(2)已知 g(x) 圖象與 y=f(x) 圖象關(guān)于x=1對(duì)稱,證明:當(dāng)  x<1 時(shí),f(x)<g(x).
(3)設(shè)x1,x2是的兩個(gè)零點(diǎn),證明:x1+x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},則集合A∩B中元素的個(gè)數(shù)為(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+y(其中a為常數(shù))僅在點(diǎn)($\frac{1}{2}$,$\frac{1}{2}$)處取得最大值,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,2)B.(0,1)C.(-1,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓$\frac{{x}^{2}}{10}$+y2=1上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國(guó)古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計(jì)算方法.它是由兩個(gè)圓柱分別從縱橫兩個(gè)方向嵌入一個(gè)正方體時(shí)兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

同步練習(xí)冊(cè)答案