6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個“金魚”圖需要火柴的根數(shù)為32.

分析 由圖形間的關(guān)系可以看出,每多出一個小金魚,則要多出6根火柴棒,則組成不同個數(shù)的圖形的火柴棒的個數(shù)組成一個首項是8,公差是6的等差數(shù)列,寫出通項,求出第n項的火柴根數(shù).

解答 解:∵第一個圖中有8根火柴棒組成,
第二個圖中有8+6個火柴棒組成,
第三個圖中有8+2×6個火柴組成,
以此類推
組成n個系列正方形形的火柴棒的根數(shù)是8+6(n-1)
∴第5個圖中的火柴棒有32個,
故答案為:32.

點評 本題考查歸納推理,考查等差數(shù)列的通項,解題的關(guān)鍵是看清隨著小金魚的增加,火柴的根數(shù)的變化趨勢,看出規(guī)律.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知an=$\frac{1}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}+\sqrt{n+1})(\sqrt{n-1}+\sqrt{n+1})}$,Sn=$\sum_{k=1}^{n}$ak,則S2009=$\frac{1}{2}$($\sqrt{2009}$-$\sqrt{2010}$+1)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=(x-2)ex+a(x-1)2有兩個零點.
(1)求a的取值范圍;
(2)已知 g(x) 圖象與 y=f(x) 圖象關(guān)于x=1對稱,證明:當(dāng)  x<1 時,f(x)<g(x).
(3)設(shè)x1,x2是的兩個零點,證明:x1+x2<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={x|x=3n+2,n∈N},B={6,8,12,14},則集合A∩B中元素的個數(shù)為( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{0≤y≤\frac{1}{2}}\end{array}\right.$,若目標函數(shù)z=ax+y(其中a為常數(shù))僅在點($\frac{1}{2}$,$\frac{1}{2}$)處取得最大值,則實數(shù)a的取值范圍是( 。
A.(-2,2)B.(0,1)C.(-1,1)D.(-1,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=($\sqrt{3}$sinx+cosx)($\sqrt{3}$cosx-sinx)的最小正周期是π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)P,Q分別為圓x2+(y-6)2=2和橢圓$\frac{{x}^{2}}{10}$+y2=1上的點,則P,Q兩點間的最大距離是6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.命題:p:?x0∈R,x${\;}_{0}^{2}$+2x0+5<0,它的否定¬p?x0∈R,x${\;}_{0}^{2}$+2x0+5≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.我國古代數(shù)學(xué)家利用“牟合方蓋”(如圖甲)找到了球體體積的計算方法.它是由兩個圓柱分別從縱橫兩個方向嵌入一個正方體時兩圓柱公共部分形成的幾何體.圖乙所示的幾何體是可以形成“牟合方蓋”的一種模型,其直觀圖如圖丙,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線.當(dāng)其正視圖和側(cè)視圖完全相同時,它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,dC.c,bD.c,d

查看答案和解析>>

同步練習(xí)冊答案