7.若集合A={x|x2-4x<0},B={-1,0,1,2},則A∩B=( 。
A.{x|0<x<4}B.{0,1,2}C.{1,2}D.{1,2,3}

分析 求出A中不等式的解集確定出A,找出A與B的交集即可.

解答 解:由A中不等式變形得:x(x-4)<0,
解得:0<x<4,即A=(0,4),
∵B={-1,0,1,2},
∴A∩B={1,2},
故選:C.

點(diǎn)評 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,則雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1的漸近線方程為( 。
A.y=±$\frac{\sqrt{3}}{2}$xB.y=±$\sqrt{3}$xC.y=±$\frac{1}{2}$xD.y=±x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)i是虛數(shù)單位,復(fù)數(shù)z=$\frac{2i}{1+i}$,則|z|=( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=2ex,函數(shù)g(x)=k(x+1),若函數(shù)f(x)圖象恒在函數(shù)g(x)圖象的上方(沒有交點(diǎn)),則實(shí)數(shù)的取值范圍是( 。
A.k>2B.k≥2C.0≤k≤2D.0≤k<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.復(fù)數(shù)$\frac{3+i}{1-3i}$=(  )
A.-iB.iC.2iD.-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知圓x2+y2=1上兩點(diǎn)A、B與坐標(biāo)原點(diǎn)O恰構(gòu)成正三角形,則向量$\overrightarrow{OA}$與$\overrightarrow{OB}$的數(shù)量積是( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知點(diǎn)$A(3,\sqrt{3})$,O為坐標(biāo)原點(diǎn),點(diǎn)P(x,y)滿足$\left\{{\begin{array}{l}{\sqrt{3}x-y≤0}\\{x-\sqrt{3}y+2≥0}\\{y≥0}\end{array}}\right.$,則滿足條件點(diǎn)P所形成的平面區(qū)域的面積為$\sqrt{3}$,$\frac{{\overrightarrow{OA}•\overrightarrow{OP}}}{{|\overrightarrow{OA}|}}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若(1+x)(1-2x)7=a0+a1x+a2x2+…+a8x8,則a1+a2+a3+…+a7的值是-131.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某三棱錐的三視圖如圖所示,該三棱錐的體積是( 。
A.$\frac{64}{3}$B.32C.16D.$\frac{32}{3}$

查看答案和解析>>

同步練習(xí)冊答案