已知tanx=-2,求
sin2x-3sinxcosx-cos2x
的值.
考點(diǎn):同角三角函數(shù)基本關(guān)系的運(yùn)用
專(zhuān)題:計(jì)算題,三角函數(shù)的求值
分析:sin2x-3sinxcosx-cos2x=
sin2x-3sinxcosx-cos2x
sin2x+cos2x
=
tan2x-3tanx-1
tan2x+1
,再代入,即可得出結(jié)論.
解答: 解:∵tanx=-2,
∴sin2x-3sinxcosx-cos2x=
sin2x-3sinxcosx-cos2x
sin2x+cos2x
=
tan2x-3tanx-1
tan2x+1
=
4+6-1
4+1
=
9
5
,
sin2x-3sinxcosx-cos2x
=
3
5
5
點(diǎn)評(píng):本題考查同角三角函數(shù)關(guān)系,考查學(xué)生的計(jì)算能力,正確弦化切是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC在平面α內(nèi),∠ACB=90°,AB=2BC=2,P為平面α外一個(gè)動(dòng)點(diǎn),且PC=
3
,∠PBC=60°
(Ⅰ)問(wèn)當(dāng)PA的長(zhǎng)為多少時(shí),AC⊥PB.
(Ⅱ)當(dāng)△PAB的面積取得最大值時(shí),求直線PC與平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c.角A為銳角,且滿(mǎn)足3b=5asinB.
(1)求sin2A+cos2
B+C
2
的值;
(2)若a=
2
,△ABC的面積為
3
2
,求b,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a,b,c為角A,B,C的對(duì)邊,已知2B=A+C,b=1,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,一半徑為
3
的圓形靶內(nèi)有一個(gè)半徑為1的同心圓,將大圓分成兩部分,小圓內(nèi)部區(qū)域記為2環(huán),圓環(huán)區(qū)域記為1環(huán),某同學(xué)向該靶投擲3枚飛鏢,每次1枚.假設(shè)他每次必定會(huì)中靶,且投中靶內(nèi)各點(diǎn)是隨機(jī)的.
(Ⅰ)求該同學(xué)在一次投擲中獲得2環(huán)的概率;
(Ⅱ)設(shè)X表示該同學(xué)在3次投擲中獲得的環(huán)數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓M的離心率為
1
2
,橢圓上異于長(zhǎng)軸頂點(diǎn)的任意點(diǎn)A與左右兩焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形中面積的最大值為
3

(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)P(4,0),聯(lián)結(jié)AP與橢圓的另一交點(diǎn)記為B,若AP與橢圓相切則視為A,B重合,聯(lián)結(jié)BF2與橢圓的另一交點(diǎn)記為C,求
PA
F2C
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是梯形,四邊形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是線段AE上的動(dòng)點(diǎn).
(Ⅰ)試確定點(diǎn)M的位置,使AC∥平面DMF,并說(shuō)明理由;
(Ⅱ)在(Ⅰ)的條件下,求平面DMF與平面ABCD所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(x+
1
a
)-ax,其中a∈R且a≠0
(Ⅰ)討論f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=ax的圖象恒在函數(shù)f(x)圖象的上方,求a的取值范圍;
(Ⅲ)若存在-
1
a
<x1<0,x2>0,使得f(x1)=f(x2)=0,求證:x1+x2>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P為正方體ABCD-A1B1C1D1對(duì)角線BD1上的一點(diǎn),且BP=λBD1(λ∈(0,1).下面結(jié)論:
①AD1⊥C1P;
②若BD1⊥平面PAC,則λ=
1
3
;
③若△PAC為鈍角三角形,則λ∈(0,
1
2
);
④若λ∈(
2
3
,1),則△PAC為銳角三角形.
其中正確的結(jié)論為
 
.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案