10.已知極坐標(biāo)的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)O處,極軸與x軸的正半軸重合,且長(zhǎng)度單位相同.直線l的極坐標(biāo)方程為:ρ=$\frac{5}{sin(θ-\frac{π}{3})}$,點(diǎn)P(2cosα,2sinα+2),參數(shù)α∈[0,2π].
(1)求點(diǎn)P軌跡的直角坐標(biāo)方程;
(2)求點(diǎn)P到直線l距離的最大值.

分析 (1)設(shè)點(diǎn)P(x,y),則$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$,由此能求出點(diǎn)P的軌跡的直角坐標(biāo)方程.
(2)由已知得$ρsinθ-\sqrt{3}ρcosθ=10$.從而直線l的直角坐標(biāo)方程為$\sqrt{3}x-y+10=0$,求出圓心到直線的距離,得點(diǎn)P所在的圓與直線l相離,由此能求出點(diǎn)P到直線l距離的最大值.

解答 解:(1)設(shè)點(diǎn)P(x,y),∵P(2cosα,2sinα+2),
∴$\left\{\begin{array}{l}{x=2cosα}\\{y=2sinα+2}\end{array}\right.$,且參數(shù)α∈[0,2π],
所以點(diǎn)P的軌跡的直角坐標(biāo)方程為x2+(y-2)2=4.…(3分)
(2)∵ρ=$\frac{5}{sin(θ-\frac{π}{3})}$,∴$ρsin(θ-\frac{π}{3})$=5,
∴$\frac{1}{2}ρsinθ-\frac{\sqrt{3}}{2}ρcosθ=5$,即$ρsinθ-\sqrt{3}ρcosθ=10$.
∴直線l的直角坐標(biāo)方程為$\sqrt{3}x-y+10=0$.…(6分)
由(1)知點(diǎn)P的軌跡方程為x2+(y-2)2=4,是圓心為(0,2),半徑為2的圓.
圓心到直線的距離d=$\frac{|-2+10|}{\sqrt{(\sqrt{3})^{2}+{1}^{2}}}$=4,
點(diǎn)P所在的圓與直線l相離,…(9分)
∴點(diǎn)P到直線l距離的最大值4+2=6.…(10分)

點(diǎn)評(píng) 本題考查極坐標(biāo)方程與普通方程的互化,考查點(diǎn)到直線距離的最大值的求法,靈活利用極坐標(biāo)方程與普通方程的互化公式是解決問(wèn)題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)整數(shù)a,b,c與實(shí)數(shù)r滿足:ar2+br+c=0,ac≠0,證明:$\sqrt{{r}^{2}+{c}^{2}}$是無(wú)理數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.計(jì)算:$(3\frac{3}{8})^{-\frac{2}{3}}-(5\frac{4}{9})^{0.5}$+$(0.008)^{-\frac{2}{3}}$÷$(0.02)^{-\frac{1}{2}}$×$(0.32)^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知等比數(shù)列{an}的各項(xiàng)都為正數(shù),其前n和為Sn,且a1+a7=9,a4=2$\sqrt{2}$,則S6=7$\sqrt{2}$+7或7$\sqrt{2}$+14.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在極坐標(biāo)系中,已知圓C經(jīng)過(guò)點(diǎn)P($\sqrt{2}$,$\frac{π}{4}$),圓心為直線ρsin(θ-$\frac{π}{3}$)=-$\frac{\sqrt{3}}{2}$與極軸的交點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求直線θ=$\frac{π}{3}$(ρ∈R)被圓C所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.直三棱柱ABC-A1B1C1的各條棱長(zhǎng)均為2,E為棱CC1的中點(diǎn),則三棱錐A1-B1C1E的體積為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知△ABC,$AC=BC=\sqrt{2}a$,∠ACB=90°,過(guò)點(diǎn)A,B作線段AN,BM分別與△ABC所在的平面垂直,且AN=AB=2BM,E,F(xiàn),P分別是線段NC,AB,MC的中點(diǎn).
(Ⅰ)求證:EF∥平面MBC;
(Ⅱ)求異面直線AB與ME所成角的余弦值;
(Ⅲ)求四面體PBMF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.己知曲線C的極坐標(biāo)方程是ρ2-4ρcosθ-2psinθ=0.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy.在平面直角坐標(biāo)系中,直線經(jīng)過(guò)點(diǎn)P(1,2),傾斜角為$\frac{π}{6}$.
(1)寫(xiě)出曲線C的直角坐標(biāo)方程和直線的參數(shù)方程;
(2)設(shè)直線與曲線C相交于A、B兩點(diǎn),求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)a=20.1,b=lg$\frac{5}{2}$,c=log3$\frac{9}{10}$,則a,b,c的大小關(guān)系是( 。
A.b>c>aB.a>c>bC.b>a>cD.a>b>c

查看答案和解析>>

同步練習(xí)冊(cè)答案