【題目】下列說法正確的是( )
A.“”是“點到直線的距離為3”的充要條件
B.直線的傾斜角的取值范圍為
C.直線與直線平行,且與圓相切
D.離心率為的雙曲線的漸近線方程為
【答案】BC
【解析】
根據(jù)點到直線的距離公式判斷選項A錯誤;根據(jù)直線斜率的定義及正切函數(shù)的值域問題判斷選項B正確;根據(jù)兩直線平行的判定及直線與圓相切的判定,可判斷選項C正確;根據(jù)雙曲線漸近線的定義可判斷選項D錯誤.
選項A:由點到直線的距離為3,
可得:,解得或,
“”是“點到直線的距離為3”的充分不必要條件,
故選項A錯誤;
選項B:直線的斜率,
設(shè)直線的傾斜角為,則或,
,故選項B正確;
選項C:直線可化為,
其與直線平行,
圓的圓心到直線的距離為:
,
則直線與圓相切,故選項C正確;
選項D:離心率為,則
若焦點在x軸,則雙曲線的漸近線方程為,
若焦點在y軸,則雙曲線的漸近線方程為,
故選項D錯誤.
故選:BC.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,準(zhǔn)線與軸交于點,點在拋物線上,直線與拋物線交于另一點.
(1)設(shè)直線,的斜率分別為,,求證:常數(shù);
(2)①設(shè)的內(nèi)切圓圓心為的半徑為,試用表示點的橫坐標(biāo);
②當(dāng)的內(nèi)切圓的面積為時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市某機構(gòu)為了調(diào)查該市市民對我國申辦年足球世界杯的態(tài)度,隨機選取了位市民進行調(diào)查,調(diào)查結(jié)果統(tǒng)計如下:
支持 | 不支持 | 合計 | |
男性市民 | |||
女性市民 | |||
合計 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)利用(1)完成的表格數(shù)據(jù)回答下列問題:
(i)能否在犯錯誤的概率不超過的前提下認為支持申辦足球世界杯與性別有關(guān);
(ii)已知在被調(diào)查的支持申辦足球世界杯的男性市民中有位退休老人,其中位是教師,現(xiàn)從這位退休老人中隨機抽取人,求至多有位老師的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù))
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當(dāng)時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市一所醫(yī)院在某時間段為發(fā)燒超過38的病人特設(shè)發(fā)熱門診,該門診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:
日期 | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 |
晝夜溫差() | 8 | 10 | 13 | 12 | 7 |
就診人數(shù)(人) | 18 | 25 | 28 | 27 | 17 |
(1)求的相關(guān)系數(shù),并說明晝夜溫差()與就診人數(shù)具有很強的線性相關(guān)關(guān)系.
(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線性回歸方程,預(yù)測晝夜溫差為9時的就診人數(shù).
附:樣本的相關(guān)系數(shù)為,當(dāng)時認為兩個變量有很強的線性相關(guān)關(guān)系.
回歸直線方程為,其中,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:
(1)平面平面;
(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在斜三棱柱中,是邊長為2的正三角形,側(cè)面為菱形,且,,點O為AC中點.
(1)求證:平面ABC;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線極坐標(biāo)方程為,直線與曲線交于、兩點.
(1)求直線的普通方程以及曲線的直角坐標(biāo)方程;
(2)若直線上有定點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為,半徑為,該紙片上的等邊三角形的中心為.,,為圓上的點,分別是以為底邊的等腰三角形.沿虛線剪開后,分別以為折痕折起,使得,,重合,得到三棱錐.當(dāng)所得三棱錐體積(單位:)最大時,的邊長為_________().
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com