13.已知集合A={x|-1<x≤4},M={x|-3≤x≤7},S={x|-1≤x≤8},則∁MA={x|-3≤x≤-1或4<x≤7},∁SA=∁SA={x|4<x≤8或x=-1}.

分析 直接利用補(bǔ)集運(yùn)算得答案.

解答 解:∵A={x|-1<x≤4},M={x|-3≤x≤7},S={x|-1≤x≤8},
∴∁MA={x|-3≤x≤-1或4<x≤7},∁SA={x|4<x≤8或x=-1}.
故答案為:{x|-3≤x≤-1或4<x≤7},{x|4<x≤8或x=-1}.

點(diǎn)評(píng) 本題考查補(bǔ)集及其運(yùn)算,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知A={x|3x-2>0},B={x|x-3≤0},求A∩B,A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.判斷命題“若a2+2ab+b2+a+b-2≠0,則a+b≠1”的真假,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.若集合A={x|x2+x-6=0},B={x|mx+1=0},B?A,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)P,Q為兩個(gè)數(shù)集,P中含有0,2,5三個(gè)元素,Q中含有1,2,6三個(gè)元素,定義集合P+Q中的元素是a+b,其中a∈P,b∈Q,求P+Q中元素的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列有關(guān)命題的說(shuō)法正確的是(  )
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是$\frac{a}$=-3
C.命題“?x0∈R,使得x02+x0+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.設(shè)函數(shù)y=f(x)的定義域?yàn)镈,若存在實(shí)數(shù)x0,使f(x0)=x0成立.則稱x0為f(x)的不動(dòng)點(diǎn)或稱(x0.f(x))為函數(shù)y=f(x)圖象的不動(dòng)點(diǎn);有下列說(shuō)法:
①函數(shù)f(x)=2x2-x-4的不動(dòng)點(diǎn)是-1和2;
②若對(duì)于任意實(shí)數(shù)b,函數(shù)f(x)=ax2+(b+1)x+b-2.(a≠0)恒有兩個(gè)不相同的不動(dòng)點(diǎn),則實(shí)數(shù)a的取值范圍是  0<a≤2;
③函數(shù)f(x)=ax2+bx+c(a≠0),若y=f(x)沒(méi)有不動(dòng)點(diǎn),則函數(shù)y=f(f(x))也沒(méi)有不動(dòng)點(diǎn);
④設(shè)函數(shù)f(x)=$\frac{4}{5}$(x-1),若f(f(f(x)))為正整數(shù),則x的最小值是121;
以上說(shuō)法正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.給出以下四個(gè)命題:
①命題“?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③設(shè){an}是首項(xiàng)大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的充要條件;
④若命題p:向量$\overrightarrow{a}$=(1,-2)與向量$\overrightarrow$=(1,m)的夾角為銳角為真命題,則實(shí)數(shù)m的取值范圍是(-∞,$\frac{1}{2}$).
其中正確命題的序號(hào)是①③(寫出所有滿足題意的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.給出下列命題:①存在實(shí)數(shù)α,使sinαcosα=1,②函數(shù)y=sin($\frac{3π}{2}$+x)是偶函數(shù);③直線x=$\frac{π}{8}$是函數(shù)y=sin(2x+$\frac{5π}{4}$)的一條對(duì)稱軸;④若α、β是第一象限的角,且α>β,則sinα>sinβ.
其中正確命題的序號(hào)是②③.

查看答案和解析>>

同步練習(xí)冊(cè)答案