17.已知AD是△ABC的角平分線,且AC=2,AB=4,cos∠BAC=$\frac{11}{16}$.
(1)求△ABC的面積;
 (2)求AD的長.

分析 (1)由cos∠BAC=$\frac{11}{16}$,∠BAC∈(0,π),可得sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$,即可得出S△ABC
(2)由AD是△ABC的角平分線,可得$\frac{BD}{DC}$=$\frac{AB}{AC}$=2,∠BAD=$\frac{1}{2}$∠BAC,利用cos∠BAC=1-2sin2∠BAD,解得sin∠BAD.利用S△ABD=$\frac{1}{3}$S△ABC=$\frac{\sqrt{15}}{4}$=$\frac{1}{2}AB×ADsin\frac{1}{2}∠BAC$,即可得出.

解答 解:(1)∵cos∠BAC=$\frac{11}{16}$,∠BAC∈(0,π),∴sin∠BAC=$\sqrt{1-co{s}^{2}∠BAC}$=$\frac{3\sqrt{15}}{16}$.
∴S△ABC=$\frac{1}{2}$×2×4×$\frac{3\sqrt{15}}{16}$=$\frac{3\sqrt{15}}{4}$.
(2)由AD是△ABC的角平分線,∴$\frac{BD}{DC}$=$\frac{AB}{AC}$=2,∠BAD=$\frac{1}{2}$∠BAC,
∴cos∠BAC=1-2sin2∠BAD,∴$\frac{11}{16}$=1-2sin2∠BAD,解得sin∠BAD=$\frac{\sqrt{10}}{8}$.
∴S△ABD=$\frac{2}{3}$S△ABC=$\frac{\sqrt{15}}{2}$=$\frac{1}{2}AB×ADsin\frac{1}{2}∠BAC$=$\frac{1}{2}×4×AD$×$\frac{\sqrt{10}}{8}$.
解得AD=$\sqrt{6}$.

點評 本題考查了角平分線的性質、三角形面積計算公式、倍角公式、三角函數(shù)求值,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.閱讀右邊程序,若輸入的a,b值分別為3,-5,則輸出的a,b值分別為( 。
A.-1,4B.3,$\frac{1}{2}$C.$\frac{1}{2},-\frac{5}{4}$D.3,$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=ex,g(x)=lnx+m.
(1)當m=-1時,求函數(shù)F(x)=$\frac{f(x)}{x}$+x•g(x)在(0,+∞)上的極值;
(2)若m=2,求證:當x∈(0,+∞)時,f(x)>g(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$f′(1)x+xlnx
(1)求函數(shù)f(x)的極值;
(2)若k∈Z,且f(x)>k(x-1)對任意的x∈(1,+∞)都成立,求整數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知某連鎖經營公司所屬5個零售店某月的銷售額和利潤額資料如表:
商店名稱ABCDE
銷售額x (千萬元)35679
利潤額y (百萬元)23345
(I)畫出散點圖;
(Ⅱ)根據(jù)如下的參考公式與參考數(shù)據(jù),求利潤額y與銷售額x之間的線性回歸方程;
(Ⅲ)若該公司還有一個零售店某月銷售額為11千萬元,試估計它的利潤額是多少?
(參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{y}$=$\widehat$x+$\widehat{a}$,其中$\sum_{i=1}^{n}{x}_{i}{y}_{i}$=112,$\sum_{i=1}^{n}{{x}_{i}}^{2}$=200)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點F與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的右焦點重合,拋物線C的準線l與x軸的交點為M,過點M且斜率為k的直線l1交拋物線C于A,B兩點,線段AB的中點為P,直線PF與拋物線C交于D,E兩點
(Ⅰ)求拋物線C的方程;
(Ⅱ)若λ=$\frac{|MA|•|MB|}{|FD|•|FE|}$,寫出λ關于k的函數(shù)解析式,并求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知函數(shù)f(x)=x3-x
(1)求曲線y=f(x)在點M(1,0)處的切線方程;
(2)如果過點(1,b)可作曲線y=f(x)的三條切線,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知拋物線C:y2=2px(p>0)的焦點為F,其準線與x軸相交于點M,過焦點F且斜率為1的直線與拋物線相交所得弦的中點的縱坐標為2.已知直線l:x=my+$\frac{p}{2}$與拋物線C交于A,B兩點,且$\overrightarrow{AF}$=λ$\overrightarrow{FB}$(1≤λ≤3).
(1)求拋物線C的方程;
(2)求$\overrightarrow{MA}$2+$\overrightarrow{MB}$2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.計算${(\frac{{\sqrt{2}i}}{1+i})^{100}}$的結果為-1.

查看答案和解析>>

同步練習冊答案