11.已知拋物線x=$\frac{1}{4}$y2的焦點(diǎn)為F,過拋物線的準(zhǔn)線l與x軸的交點(diǎn)M作拋物線的一條切線,切點(diǎn)為A,連接AF交拋物線于另一點(diǎn)B,則△MAB的面積為( 。
A.4B.6C.8D.12

分析 利用過拋物線的準(zhǔn)線l與x軸的交點(diǎn)M作拋物線的一條切線,切點(diǎn)為A,連接AF交拋物線于另一點(diǎn)B,求出A,B的坐標(biāo),即可求出△MAB的面積.

解答 解:x=$\frac{1}{4}$y2的焦點(diǎn)坐標(biāo)為(1,0),準(zhǔn)線方程為x=-1.
設(shè)切線方程為y=k(x+1),
代入x=$\frac{1}{4}$y2,整理得k2x2+(2k2-4)x+k2=0,
∴△=(2k2-4)2-4k4=0,
∴k=±1,x=1
取A(1,2),則B(1,-2)
∴△MAB的面積為S=$\frac{1}{2}×4×2$=4.
故選:A.

點(diǎn)評(píng) 本題考查三角形面積的計(jì)算,考查直線與拋物線的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在數(shù)列{an}中,an+1-an=2,a2=5,則{an}的前4項(xiàng)和為(  )
A.9B.22C.24D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.使不等式tanx$≥\sqrt{3}$成立的x的集合為( 。
A.(kπ+$\frac{π}{6}$,kπ+$\frac{π}{2}$)k∈ZB.[kπ+$\frac{π}{6}$,kπ+$\frac{π}{2}$)k∈ZC.[kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$)k∈ZD.(kπ+$\frac{π}{3}$,kπ+$\frac{π}{2}$)k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+mx+n,且f(x)≤0的解集為{x|-1≤x≤$\frac{1}{2}$}.
(1)求m,n的值;
(2)求f(2x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.當(dāng)n>2時(shí),證明:3n>(n+2)•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.等差數(shù)列{an},a1,a2,a3,…,am的和為64,而且am-1+a2=8,那么項(xiàng)數(shù)m=16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.9,a,b,243是等比數(shù)列,則a,b的值分別為( 。
A.27,81B.81,27C.-27,81D.27,-81

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)=x+1,g(x)=2x+1,數(shù)列{an}滿足a1=1,an+1=$\left\{\begin{array}{l}{f({a}_{n}),n為奇數(shù)}\\{g({a}_{n}),n為偶數(shù)}\end{array}\right.$,則a2016=( 。
A.22016-2016B.21007-2016C.22016-2D.21009-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若函數(shù)f(x)=ax2+$\frac{1}{x}$,則下列結(jié)論正確的是( 。
A.?a∈R,函數(shù)f(x)是奇函數(shù)B.?a∈R,函數(shù)f(x)是偶函數(shù)
C.?a∈R,函數(shù)f(x)在(0,+∞)上是增函數(shù)D.?a∈R,函數(shù)f(x)在(0,+∞)上是減函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案