分析 由n>2,運用二項式定理,可得3n=(1+2)n=1+${C}_{n}^{1}$•2+${C}_{n}^{2}$•22+…+${C}_{n}^{n-1}$•2n-1+${C}_{n}^{n}$•2n,由不等式的性質(zhì)即可得證.
解答 證明:由n>2,可得3n=(1+2)n
=1+${C}_{n}^{1}$•2+${C}_{n}^{2}$•22+…+${C}_{n}^{n-1}$•2n-1+${C}_{n}^{n}$•2n
=1+2n+$\frac{n(n-1)}{2}$+…+(n+2)•2n-1
>(n+2)•2n-1.
則3n>(n+2)•2n-1.
點評 本題考查不等式的證明,注意運用二項式定理,考查推理能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | k=-$\frac{1}{2}$或k>0 | B. | -$\frac{1}{2}$<k<0或k>0 | C. | k≥-$\frac{1}{2}$ | D. | k≥0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com