【題目】已知p:方程表示雙曲線(xiàn),q:表示焦點(diǎn)在x軸上的橢圓.

(1)若“pq”是真命題,求實(shí)數(shù)m的取值范圍;

(2)若“pq”是假命題,“pq”是真命題,求實(shí)數(shù)m的取值范圍.

【答案】(1);(2)

【解析】

(1)求出命題為真命題時(shí)的取值范圍,再根據(jù)是真命題列不等式組,求出的取值范圍;(2)當(dāng)是假命題, “是真命題時(shí)真一假,分兩種情況討論,對(duì)于假以及真分別列不等式組,分別解不等式組,然后求并集即可求得實(shí)數(shù)的取值范圍..

(1)命題p:方程表示雙曲線(xiàn),

,解得;

命題q:表示焦點(diǎn)在軸上的橢圓,

,解得2<m<6;

若“pq”是真命題,則,解得2<m<6,

實(shí)數(shù)m的取值范圍是2<m<6;

(2)若“pq”是假命題,“pq”是真命題,

p、q一真一假;

當(dāng)pq假時(shí),

解得1<m≤2;

當(dāng)pq真時(shí),

解得4≤m<6;

綜上,實(shí)數(shù)m的取值范圍是1<m≤2或4≤m<6.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a,b,c是△ABC的三邊,P: , Q:方程x2 +2ax+b2 = 0與方程x2 +2cx-b2 = 0有公共根. 則P是Q的_____.(填:充分不必要條件,必要而不充分條件,充要條件,既不充分也不必要條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對(duì)任意實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),離心率為.

1)求橢圓的方程;

2)直線(xiàn)過(guò)橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}為等比數(shù)列,
(1)若an>0,且a2a4+2a3a5a4a6=25,求a3a5.
(2)a1+a2+a3=7,a1a2a3=8,求an.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(,﹣1),B(2,1),函數(shù)f(x)=log2x.

(1)過(guò)原點(diǎn)O作曲線(xiàn)y=f(x)的切線(xiàn),求切線(xiàn)的方程;

(2)曲線(xiàn)y=f(x)(≤x≤2)上是否存在點(diǎn)P,使得過(guò)P的切線(xiàn)與直線(xiàn)AB平行?若存在,則求出點(diǎn)P的橫坐標(biāo),若不存在,則請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是為直線(xiàn)上一點(diǎn)(點(diǎn)在軸的上方),直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為.

(1)若的面積是的面積的,求直線(xiàn)的方程;

(2)設(shè)直線(xiàn)與直線(xiàn)的斜率分別為,求證:為定值;

(3)若的延長(zhǎng)線(xiàn)交直線(xiàn)于點(diǎn),求線(xiàn)段長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是,為直線(xiàn)上一點(diǎn)(點(diǎn)在軸的上方),直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為,直線(xiàn)與橢圓的另一個(gè)交點(diǎn)為.

(1)若的面積是的面積的,求直線(xiàn)的方程;

(2)設(shè)直線(xiàn)與直線(xiàn)的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市有一直角梯形綠地ABCD,其中∠ABC=∠BAD=90°,AD=DC=2km,BC=1km.現(xiàn)過(guò)邊界CD上的點(diǎn)E處鋪設(shè)一條直的灌溉水管EF,將綠地分成面積相等的兩部分.

(1)如圖①,若E為CD的中點(diǎn),F(xiàn)在邊界AB上,求灌溉水管EF的長(zhǎng)度;
(2)如圖②,若F在邊界AD上,求灌溉水管EF的最短長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案