【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實數(shù)a的取值范圍是(
A.[ ,
B.[ ,
C.[ ,e]
D.[ ,e]

【答案】B
【解析】解:設(shè)g(x)=xex , f(x)=2ax﹣a, 由題意可得g(x)=xex在直線f(x)=2ax﹣a下方,
g′(x)=(x+1)ex
f(x)=2ax﹣a恒過定點( ,0),
設(shè)直線與曲線相切于(m,n),
可得2a=(m+1)em , mem=2am﹣a,
消去a,可得2m2﹣m﹣1=0,解得m=1(舍去)或﹣ ,
則切線的斜率為2a=(﹣ +1)e ,
解得a= ,
又由題設(shè)原不等式無整數(shù)解,
由圖象可得當(dāng)x=﹣1時,g(﹣1)=﹣e1 , f(﹣1)=﹣3a,
由f(﹣1)=g(﹣1),可得a= ,
由直線繞著點( ,0)旋轉(zhuǎn),
可得 ≤a< ,
故選:B.

設(shè)g(x)=xex , f(x)=2ax﹣a,求出g(x)的導(dǎo)數(shù),判斷直線恒過定點,設(shè)直線與曲線相切于(m,n),求得切線的斜率和切點在直線上和曲線上,解方程可得a,再由題意可得當(dāng)x=﹣1時,求得a,通過圖象觀察,即可得到a的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱臺, 平面, , , 分別為的中點.

1求證: 平面

2求平面與平面所成角(銳角)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的左、右焦點分別為 ,上、下頂點分別是 ,點 的中點,若 ,且 .
(1)求橢圓 的標(biāo)準(zhǔn)方程;
(2)過 的直線 與橢圓 交于不同的兩點 ,求 的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若函數(shù)上的奇函數(shù),求實數(shù)a的值;

(2)當(dāng)函數(shù)為減函數(shù),求實數(shù)a的取值范圍;

(3)是否存在實數(shù)(),使得 在閉區(qū)間上的最大值為2,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三數(shù)學(xué)競賽初賽考試結(jié)束后,對考生成績進(jìn)行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分為六組,第一組.如圖為其頻率分布直方圖的一部分,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
(1)請補(bǔ)充完整頻率分布直方圖,并估計這組數(shù)據(jù)的平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績從第四組和第六組中任意選2人,記他們的成績分別為x,y.若|x﹣y|≥10,則稱此二人為“黃金幫扶組”,試求選出的二人為“黃金幫扶組”的概率P1;
(3)以此樣本的頻率當(dāng)作概率,現(xiàn)隨機(jī)在這組樣本中選出3名學(xué)生,求成績不低于120分的人數(shù)ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù)上是單調(diào)遞增函數(shù),則的取值范圍是______.

【答案】

【解析】,

又函數(shù)單調(diào)遞增,

上恒成立,

上恒成立。

又當(dāng)時, ,

,

。

故實數(shù)的取值范圍是。

答案

點睛對于導(dǎo)函數(shù)和函數(shù)單調(diào)性的關(guān)系要分清以下結(jié)論:

1)當(dāng)時,若,在區(qū)間D上單調(diào)遞增);

2)若函數(shù)在區(qū)間D上單調(diào)遞增),在區(qū)間D上恒成立。即解題時可將函數(shù)單調(diào)性的問題轉(zhuǎn)化為的問題,但此時不要忘記等號

型】填空
結(jié)束】
19

【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;丁:我沒有偷.根據(jù)以上條件,可以判斷偷珠寶的人是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 = 時,求二面角F﹣CE﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點分別是橢圓的左右頂點, 為其右焦點, 的等比中項是,橢圓的離心率為.

(1)求橢圓的方程;

(2)設(shè)不過原點的直線與該軌跡交于兩點,若直線的斜率依次成等比數(shù)列,求的面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案