【題目】已知點(diǎn)分別是橢圓的左右頂點(diǎn), 為其右焦點(diǎn), 的等比中項(xiàng)是,橢圓的離心率為.

(1)求橢圓的方程;

(2)設(shè)不過原點(diǎn)的直線與該軌跡交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求的面積的取值范圍.

【答案】(1) ;(2) .

【解析】試題分析:(1)利用, , 的等比中項(xiàng),得到,結(jié)合橢圓得離心率求解即可;(2)依題意知直線的斜率存在且不為0設(shè)直線, , ,聯(lián)立直線和橢圓消去可得,利用判別式以及韋達(dá)定理,通過, 的斜率依次成等比數(shù)列,推出,求出, ,且,然后求出點(diǎn)到直線的距離,表示出三角形面積,求解范圍即可.

試題解析:(1) , , 的等比中項(xiàng),

,又,解得

∴橢圓的方程為.

(2)由題意可知,直線的斜率存在且不為0,故可設(shè)直線, ,

聯(lián)立直線和橢圓,消去得, ,

由題意可知, ,

,

,

又直線, 的斜率依次成等比數(shù)列,所以

, 代入并整理得

因?yàn)?/span>, , ,且

設(shè)為點(diǎn)到直線的距離,則有 ,

,

∴三角形面積的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的不等式xex﹣2ax+a<0的非空解集中無整數(shù)解,則實(shí)數(shù)a的取值范圍是(
A.[ ,
B.[ ,
C.[ ,e]
D.[ ,e]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務(wù)技術(shù)水平,公司擬聘請專業(yè)培訓(xùn)機(jī)構(gòu)進(jìn)行培訓(xùn).培訓(xùn)的總費(fèi)用由兩部分組成:一部分是給每位參加員工支付400元的培訓(xùn)材料費(fèi);另一部分是給培訓(xùn)機(jī)構(gòu)繳納的培訓(xùn)費(fèi).若參加培訓(xùn)的員工人數(shù)不超過30人,則每人收取培訓(xùn)費(fèi)1000元;若參加培訓(xùn)的員工人數(shù)超過30人,則每超過1人,人均培訓(xùn)費(fèi)減少20元.設(shè)公司參加培訓(xùn)的員工人數(shù)為x人,此次培訓(xùn)的總費(fèi)用為y元.

(1)求出yx之間的函數(shù)關(guān)系式;

(2)請你預(yù)算:公司此次培訓(xùn)的總費(fèi)用最多需要多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓的半徑為,,是圓上的一個(gè)動點(diǎn),的中垂線于點(diǎn),以直線軸,的中垂線為軸建立平面直角坐標(biāo)系。

(Ⅰ)若點(diǎn)的軌跡為曲線,求曲線的方程;

(Ⅱ)設(shè)點(diǎn)為圓上任意一點(diǎn),過作圓的切線與曲線交于兩點(diǎn),證明:以為直徑的圓經(jīng)過定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x+ +lnx,a∈R. (Ⅰ)若f(x)在x=1處取得極值,求a的值;
(Ⅱ)若f(x)在區(qū)間(1,2)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)討論函數(shù)g(x)=f'(x)﹣x的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面, , 中點(diǎn).

(1)證明:直線平面;

(2)點(diǎn)在棱上,且直線與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1axby-1=0(ab不同時(shí)為0),l2:(a+2)xya=0.

(1)b=0l1l2,求實(shí)數(shù)a的值;

(2)當(dāng)b=2,l1l2時(shí),求直線l1l2之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知指數(shù)函數(shù)y=g(x)滿足:g(3)=8,定義域?yàn)镽的函數(shù)f(x)= 是奇函數(shù).

(1)確定y=g(x),y=f(x)的解析式;

(2)若h(x)=f(x)+a在(﹣1,1)上有零點(diǎn),求a的取值范圍;

(3)若對任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,過點(diǎn)作圓的切線,切點(diǎn)分別為.直線恰好經(jīng)過的右頂點(diǎn)和上頂點(diǎn).

1)求橢圓的方程;

2)如圖,過橢圓的右焦點(diǎn)作兩條互相垂直的弦,

①設(shè)中點(diǎn)分別為,證明:直線必過定點(diǎn),并求此定點(diǎn)坐標(biāo);

②若直線, 的斜率均存在時(shí),求由四點(diǎn)構(gòu)成的四邊形面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案