已知i為虛數(shù)單位,復數(shù)z=2i(2-i)的實部為a,虛部為b,則logab等于(  )
A、0B、1C、2D、3
考點:復數(shù)代數(shù)形式的乘除運算,對數(shù)的運算性質
專題:數(shù)系的擴充和復數(shù)
分析:直接由復數(shù)代數(shù)形式的乘法運算化簡,求得實部a和虛部b的值,代入logab后利用對數(shù)的運算性質求值.
解答: 解:由z=2i(2-i)=2+4i,且數(shù)z=2i(2-i)的實部為a,虛部為b,
∴a=2,b=4.
∴l(xiāng)ogab=log24=2.
故選:C.
點評:本題考查復數(shù)代數(shù)形式的乘除運算,考查了對數(shù)的運算性質,是基礎的計算題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a1=-25,S3=S8,則當an>0時,最小的正整數(shù)n為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合M={x|y=
x
},N={y|y=x2-2,x∈R},則M∩N=( 。
A、[0,+∞)
B、[-2,+∞)
C、∅
D、[-2,0)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設變量x,y滿足約束條件
x≥0
y≥0
2x+y≤4
2x+3y≤6
,則z=4x+3y的最大值是(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(2-x)為奇函數(shù),函數(shù)f(x+3)關于直線x=1對稱,則函數(shù)f(x)的最小正周期為( 。
A、4B、8C、12D、16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex-1-x-ax2,當x≥0時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線Γ:y2=2px(p>0)過點(t,
2t
)(t是大于0的常數(shù)).
(Ⅰ)求拋物線Γ的方程;
(Ⅱ)若F是拋物線Γ的焦點,斜率為1的直線交拋物線Γ于A,B兩點,x軸負半軸上的點C,D滿足|FA|=|FC|,|FD|=|FB|,直線AC,BD相交于點E,當
S△AEFS△BEF
S△ABF2
=
5
8
時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C所對應的邊分別為a,b,c,且a+c=7.a(chǎn)>c,b=2,cosB=
7
8
,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-1)2+(y-2)2=25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R),設直線L與圓C的交點為A,B,當直線L被圓C截得的弦最短時,求△ABC的面積.

查看答案和解析>>

同步練習冊答案