4.已知函數(shù)f(x)=lg$\frac{x-a}{x+1}$(a∈R).
(1)若f(x)是定義域上奇函數(shù),求a的值;
(2)若函數(shù)在[1,+∞)上單增,求a的取值范圍.

分析 (1)若函數(shù)f(x)=lg$\frac{x-a}{x+1}$是定義域上奇函數(shù),則f(-x)=-f(x)恒成立,進而得到滿足條件的a的值;
(2)若函數(shù)在[1,+∞)上單增,則t=$\frac{x-a}{x+1}$在[1,+∞)上單增,且$\frac{x-a}{x+1}$>0恒成立,進而可得a的取值范圍.

解答 解:(1)若函數(shù)f(x)=lg$\frac{x-a}{x+1}$是定義域上奇函數(shù),
則f(-x)=-f(x)恒成立,
即lg$\frac{-x-a}{-x+1}$=-lg$\frac{x-a}{x+1}$恒成立,
即$\frac{-x-a}{-x+1}$•$\frac{x-a}{x+1}$=1恒成立,
解得:a=±1,
經(jīng)檢驗,a=1時,f(x)是奇函數(shù);
a=-1時,f(x)的定義域是{x|x≠-1}不是奇函數(shù);
故a=1;
(2)若函數(shù)在[1,+∞)上單增,
則t=$\frac{x-a}{x+1}$在[1,+∞)上單增,且$\frac{x-a}{x+1}$>0恒成立,
則$\left\{\begin{array}{l}-a-1<0\\ \frac{1-a}{2}>0\end{array}\right.$,
解得:a∈(-1,1)

點評 本題考查的知識點是函數(shù)的奇偶性,函數(shù)恒成立問題,函數(shù)的單調(diào)性,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{6}$)
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)O為極點,A,B為圓C上的兩點,且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=loga$\frac{1+x}{mx-2m+1}$(a>0,a≠1)的圖象關(guān)于原點成中心對稱,其定義域為區(qū)間D.
(1)求實數(shù)m的值及函數(shù)的定義域D;
(2)若關(guān)于x的不等式f(x)>loga$\frac{(x-1)(7-x)}$對于?x∈[2,6]恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.三棱錐S-ABC的頂點S在平面ABC內(nèi)的射影為P,給出下列條件,一定可以判斷P為三角形ABC的垂心的有( 。﹤
①SA=SB=SC
②SA,SB,SC兩兩垂直 
③∠ABC=90°,SC⊥AB
④SC⊥AB,SA⊥BC.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=|x+1|+|x-5|,x∈R.
(Ⅰ)求不等式f(x)≤x+10的解集;
(Ⅱ)如果關(guān)于x的不等式f(x)≥a-(x-2)2在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.下列命題:
①y=sin($\frac{π}{2}$+x)是偶函數(shù);
②若α,β是第一象限角,且α<β,則tanα<tanβ;
③y=tan(x+$\frac{π}{4}$)圖象的一個對稱中心是($\frac{π}{4}$,0);
④cos1<sin1<tan1.
其中所有正確命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.極坐標(biāo)系的極點為直角坐標(biāo)系xOy的原點,極軸為x軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線C的極坐標(biāo)方程為ρ=2(cosθ+sinθ).
(1)求曲線C的直角坐標(biāo)方程;
(2)直線l:$\left\{\begin{array}{l}{x=\frac{1}{2}t}\\{y=1+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$,設(shè)E、F分別為PC、BD的中點.
(1)求證:EF∥平面PAD;
(2)求二面角B-PD-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在平面直角坐標(biāo)系xOy中,已知圓C:x2+y2-(6-2m)x-4my+5m2-6m=0,直線l經(jīng)過點(1,-1),若對任意的實數(shù)m,直線l被圓C截得的弦長都是定值,則直線l的方程為2x+y-1=0.

查看答案和解析>>

同步練習(xí)冊答案