分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)z的幾何意義,利用數(shù)形結(jié)合即可得到最大值和最小值.
解答 解:不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+5y得y=$-\frac{3}{5}$$x+\frac{z}{5}$,
平移直線y=$-\frac{3}{5}$$x+\frac{z}{5}$,則由圖象可知當(dāng)直線y=$-\frac{3}{5}$$x+\frac{z}{5}$經(jīng)過點(diǎn)A時(shí)直線y=$-\frac{3}{5}$$x+\frac{z}{5}$的截距最大,
此時(shí)z最大,當(dāng)經(jīng)過點(diǎn)B時(shí),直線的截距最小,此時(shí)z最。
由$\left\{\begin{array}{l}{y=x+1}\\{5x+3y=15}\end{array}\right.$解得$\left\{\begin{array}{l}{x=\frac{3}{2}}\\{y=\frac{5}{2}}\end{array}\right.$,即A($\frac{3}{2}$,$\frac{5}{2}$),
此時(shí)最大值z(mì)=3×$\frac{3}{2}$+5×$\frac{5}{2}$=17,
由$\left\{\begin{array}{l}{y=x+1}\\{x-5y=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,即B(-2,-1),
此時(shí)最小值z(mì)=3×(-2)+5×(-1)=-11.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -6 | B. | $-\frac{1}{6}$ | C. | 6 | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com