分析 設(shè)點A(s,t),B(-s,-t),M(m,n),運用直線的斜率公式和點差法,可得$\frac{^{2}}{{a}^{2}}$=$\frac{16}{25}$,再由離心率公式計算即可得到所求.
解答 解:設(shè)點A(s,t),B(-s,-t),M(m,n),
則kAM•kBM=$\frac{n-t}{m-s}$•$\frac{n+t}{m+s}$=$\frac{{n}^{2}-{t}^{2}}{{m}^{2}-{s}^{2}}$=-$\frac{16}{25}$,
∵$\frac{{m}^{2}}{{a}^{2}}$+$\frac{{n}^{2}}{^{2}}$=1,$\frac{{s}^{2}}{{a}^{2}}$+$\frac{{t}^{2}}{^{2}}$=1,
∴$\frac{{m}^{2}-{s}^{2}}{{a}^{2}}$+$\frac{{n}^{2}-{t}^{2}}{^{2}}$=0,
∴$\frac{{n}^{2}-{t}^{2}}{{m}^{2}-{s}^{2}}$=-$\frac{^{2}}{{a}^{2}}$=-$\frac{16}{25}$,
則e=$\frac{c}{a}$=$\sqrt{\frac{{a}^{2}-^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{16}{25}}$=$\frac{3}{5}$,
故答案為:$\frac{3}{5}$.
點評 本題考查橢圓的方程和性質(zhì),主要考查的離心率的求法和方程的運用,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,1) | B. | (1,+∞) | C. | (1,2) | D. | (-1,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-$\sqrt{5}$,1) | B. | [-$\sqrt{5}$,1) | C. | [-2,1) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com