【題目】在平面直角坐標(biāo)系xOy中,圓C的方程為(x﹣2)2+y2=1,點(diǎn)P在直線l:x+y+1=0上,若過點(diǎn)P存在直線m與圓C交于A,B兩點(diǎn),且點(diǎn)A為PB中點(diǎn),則點(diǎn)P的恒坐標(biāo)的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙兩人每次射擊命中目標(biāo)的概率分別為 ,且各次射擊相互獨(dú)立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標(biāo)就停止射擊,則停止射擊時(shí),甲射擊了兩次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的首項(xiàng)為1,前n項(xiàng)和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)存在正整數(shù)k,使(1+S1)(1+S1)…(1+Sn)≥k 對(duì)于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的方程為(2﹣m)x+(2m+1)y+3m+4=0,其中m∈R.
(1)求證:直線l恒過定點(diǎn);
(2)當(dāng)m變化時(shí),求點(diǎn)P(3,1)到直線l的距離的最大值;
(3)若直線l分別與x軸、y軸的負(fù)半軸交于A,B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)(0,3)的直線與拋物線交于A,B兩點(diǎn),線段AB的垂直平分線交x軸于點(diǎn)D,若|AF|+|BF|=6,則點(diǎn)D的橫坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的不等式ax2+bx+3>0的解集為(﹣1,3).
(1)求實(shí)數(shù)a,b的值;
(2)解不等式x2+a|x﹣2|﹣8<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}滿足an>0,n=1,2,…,且a5a2n﹣5=22n(n≥3),則當(dāng)n≥1時(shí),log2a1+log2a3+…+log2a2n﹣1=( )
A.n(2n﹣1)
B.(n+1)2
C.n2
D.(n﹣1)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知t= (u>1),且關(guān)于t的不等式t2﹣8t+m+18<0有解,則實(shí)數(shù)m的取值范圍是( )
A.(﹣∞,﹣3)
B.(﹣3,+∞)
C.(3,+∞)
D.(﹣∞,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}和等比數(shù)列{bn},其中{an}的公差不為0.設(shè)Sn是數(shù)列{an}的前n項(xiàng)和.若a1 , a2 , a5是數(shù)列{bn}的前3項(xiàng),且S4=16.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)若數(shù)列{ }為等差數(shù)列,求實(shí)數(shù)t;
(3)構(gòu)造數(shù)列a1 , b1 , a2 , b1 , b2 , a3 , b1 , b2 , b3 , …,ak , b1 , b2 , …,bk , …,若該數(shù)列前n項(xiàng)和Tn=1821,求n的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com