某市教育局為了了解高三學(xué)生體育達(dá)標(biāo)情況,在某學(xué)校的高三學(xué)生體育達(dá)標(biāo)成績(jī)中隨機(jī)抽取100個(gè)進(jìn)行調(diào)研,按成績(jī)分組:第l組[75,80),第2組[80,85),第3組[85,90),第4組[90,95),第5組[95,100]得到的頻率分布直方圖如圖所示:若要在成績(jī)較高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)行復(fù)查:
(I)已知學(xué)生甲和學(xué)生乙的成績(jī)均在第四組,求學(xué)生甲和學(xué)生乙至少有一人被選中復(fù)查的概率;
(Ⅱ)在已抽取到的6名學(xué)生中隨機(jī)抽取3名學(xué)生接受籃球項(xiàng)目的考核,設(shè)第三組中有三名學(xué)生接受籃球項(xiàng)目的考核,求接受籃球項(xiàng)目的考核學(xué)生的分布列和數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,頻率分布直方圖
專題:綜合題,概率與統(tǒng)計(jì)
分析:(I)根據(jù)分層抽樣知,第三組應(yīng)抽取3人,第四組應(yīng)抽取2人,第五組應(yīng)抽取1人,即可求學(xué)生甲和學(xué)生乙至少有一人被選中復(fù)查的概率;
(Ⅱ)確定第三組應(yīng)有3人進(jìn)入復(fù)查,則隨機(jī)變量ξ可能的取值為0,1,2,3,求出相應(yīng)的概率,可得ξ的分布列和數(shù)學(xué)期望.
解答: 解:(Ⅰ)設(shè)“學(xué)生甲和學(xué)生乙至少有一人參加復(fù)查”為事件A,
第三組人數(shù)為100×0.06×5=30,第四組人數(shù)為100×0.04×5=20,第五組人數(shù)為100×0.02×5=10,
根據(jù)分層抽樣知,第三組應(yīng)抽取3人,第四組應(yīng)抽取2人,第五組應(yīng)抽取1人,…(2分)
第四組的學(xué)生甲和學(xué)生乙至少有1人進(jìn)入復(fù)查,則:P(A)=
C
1
2
C
1
18
+1
C
2
20
=
37
190
.…(5分)
(Ⅱ)第三組應(yīng)有3人進(jìn)入復(fù)查,則隨機(jī)變量ξ可能的取值為0,1,2,3.
P(ξ=i)=
C
i
3
C
3-i
3
C
3
6
(i=0、1、2、3)
,則隨機(jī)變量ξ的分布列為:
ξ 0 1 2 3
P
1
20
9
20
9
20
1
20
Eξ=0×
1
20
+1×
9
20
+2×
9
20
+3×
1
20
=
3
2
.…(12分)
點(diǎn)評(píng):本題考查概率知識(shí),考查離散型隨機(jī)變量的分布列與數(shù)學(xué)期望,確定變量的取值,正確求概率是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(x-1)n的奇數(shù)項(xiàng)二項(xiàng)式系數(shù)和64,若(x-1)n=a0+a1(x+1)+a2(x+1)2+…+an(x+1)n,則a1等于( 。
A、-14B、448
C、-1024D、-16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在山腳A測(cè)得山頂P的仰角為30°,沿傾斜角為15°的斜坡向上走a米到B,在B處測(cè)得山頂P的仰角為60°,求山高h(yuǎn)=( 。
A、
2
2
a
B、
a
2
C、
3
2
a
D、a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲組有6人,乙組有4人,其中組長(zhǎng)各1人.
(Ⅰ)這10人站成一排照相,根據(jù)下列要求,各有多少種排法?
①同組人員相鄰;
②乙組人員不相鄰.
(Ⅱ)現(xiàn)選派5人去參加比賽,根據(jù)下列要求,各有多少種選派方法?
①甲組3人,乙組2人;
②組長(zhǎng)中至少有1人參加.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從某校隨機(jī)抽取20個(gè)班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖和頻率分布直方圖如圖.

(1)求頻率分布直方圖中m的值;
(2)若要從有網(wǎng)上購物經(jīng)歷的人數(shù)在區(qū)間[30,40]內(nèi)的班級(jí)中任取兩個(gè)班,求其中至少有一個(gè)班有網(wǎng)上購物經(jīng)歷的人數(shù)大于36的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,F(xiàn)為線段BC的中點(diǎn).
(Ⅰ)證明:平面PAF⊥平面PFD
(Ⅱ)若PB與平面ABCD所成的角為45°,求直線AD與平面PFD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinx-ax-bxcosx(a∈R,b∈R).
(1)若b=0,討論函數(shù)f(x)在區(qū)(0,π)上的單調(diào)性;
(2)若a=2b且a≥
2
3
,對(duì)任意的x>0,試比較f(x)與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx-mx(m∈R).
(1)若曲線y=f(x)過點(diǎn)P(1,-1),求曲線y=f(x)在點(diǎn)P處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(3)若函數(shù)f(x)有兩個(gè)不同的零點(diǎn)x1,x2,求證:x1x2>e2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,AB=2AD=4,BD=2
3
,PD⊥底面ABCD.
(Ⅰ)證明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D大小為
π
4
,求AP與平面PBC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案