5.解不等式:$\frac{(x-1)(x+2)}{(x-1)(x+3)}$>0.

分析 原不等式可化為$\frac{x+2}{x+3}$>0,且x≠1,即為(x+2)(x+3)>0,且x≠1,解得即可.

解答 解:原不等式可化為$\frac{x+2}{x+3}$>0,且x≠1,即為(x+2)(x+3)>0,且x≠1,
解得x<-3或x>-2,且x≠1,
故原不等式的解集為(-∞,-3)∪(-2,1)∪(1,+∞).

點評 本題考查了分式不等式的解法,靈活轉(zhuǎn)化是關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若cosx=2m-1,且x∈R,則m的取值范圍是( 。
A.(-∞,1]B.[0,+∞)C.[-1,0]D.[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知$\overrightarrow{a}$+$\overrightarrow$=(2,-8),$\overrightarrow{a}$-$\overrightarrow$=(-8,16),
(1)求$\overrightarrow{a}$、$\overrightarrow$的坐標(biāo); 
(2)求$\overrightarrow{a}$•$\overrightarrow$的值;
(3)求$\overrightarrow{a}$與$\overrightarrow$夾角θ的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.集合{z|z=in,n∈N},用列舉法表示該集合,這個集合是( 。
A.{i}B.{i,-i}C.{1,-1}D.{i,-i,1,-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)橢圓$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{25}$=1的兩焦點分別為F1,F(xiàn)2,過F1的直線交橢圓于A.B兩點,則△ABF2的周長為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}和{bn}的前n項和分別為Sn,Tn
(1)若{an}和{bn}分別是公差為d1,d2的等差數(shù)列,當(dāng)d1,d2滿足什么條件時,{anbn}也為等差數(shù)列?
(2)如果{bn}為等差數(shù)列,且對一切正整數(shù)n,Sn-Tn=(an-bn)n恒成立,求證:{an}為等差數(shù)列;
(3)如果{an}為等差數(shù)列,且a1=-9,S9=S10;{bn}為等比數(shù)列,且b1=2,T3=14,求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的前n項和,并求數(shù)列{$\frac{{a}_{n}}{_{n}}$}的最大項和最小項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.用拉格朗日中值定理證明不等式:$\frac{x}{1+x}$<ln(1+x)<x(x>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)等差數(shù)列{an}的前n項和為Sn,其中an>0,d>0且$\sqrt{{a}_{11}+{a}_{15}}$=a13,若Sn=50,則n=25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=-4x3+x2+4x-1,g(x)=ax-a,a∈R.
(1)求函數(shù)f(x)的極大值、極小值;
(2)若在(-∞,1)內(nèi)存在唯一的整數(shù)m,使得f(m)<g(m)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案