11.若函數(shù)f(x)=x3-mx2-x+5在區(qū)間(0,1)內(nèi)單調(diào)遞減,則實(shí)數(shù)m的取值范圍是(  )
A.m≥1B.m=1C.m≤1D.0<m<1

分析 求導(dǎo)數(shù)f′(x)=3x2-2mx-1,所以根據(jù)題意便有3x2-2mx-1≤0在(0,1)上恒成立,這樣解關(guān)于m的不等式組即得實(shí)數(shù)m的取值范圍.

解答 解:f′(x)=3x2-2mx-1,f(x)在(0,1)上單調(diào)遞減;
∴f′(x)≤0在(0,1)上恒成立;即3x2-2mx-1≤0,在(0,1)上恒成立.
分離參數(shù)m$≥\frac{3}{2}x-\frac{1}{2x}$,易知,函數(shù)$y=\frac{3x}{2}-\frac{1}{2x}$為增函數(shù),所以
$m≥(\frac{3}{2}x-\frac{1}{2x})_{max}$=1.
故選:A

點(diǎn)評(píng) 考查函數(shù)單調(diào)性和函數(shù)導(dǎo)數(shù)符號(hào)的關(guān)系,要熟悉二次函數(shù)的圖象,并會(huì)運(yùn)用.屬于簡(jiǎn)單題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.把函數(shù)$y=sin(2x+\frac{π}{3})$的圖象向左平移φ(|φ|<$\frac{π}{2}$)個(gè)單位后得到的圖象關(guān)于y軸對(duì)稱,則φ的最小正值為( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)$f(x)=a(x-\frac{1}{x})-2lnx(a∈R)$,g(x)=-$\frac{a}{x}$,若至少存在一個(gè)x0∈[1,e],使得f(x0)>g(x0)成立,則實(shí)數(shù)a的取值范圍為(  )
A.[0,+∞)B.(0,+∞)C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,設(shè)角A,B,C的對(duì)邊分別為a,b,c,若b=5,B=$\frac{π}{4}$,tanA=2,則a=2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若函數(shù)y=f(x)在點(diǎn)x=1處的導(dǎo)數(shù)為1,則$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(x)}{△x}$=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若方程xe-x-a+1=0有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是(1,1+$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x)有唯一的極值點(diǎn)x=x0,且y極小值=f(x0),則下列說(shuō)法正確的是( 。
A.函數(shù)f(x)在[a,b]上不一定有最小值
B.函數(shù)f(x)在[a,b]上有最小值,但不一定是f(x0
C.函數(shù)f(x)在[a,b]上有最小值f(x0
D.函數(shù)f(x)在[a,b]上的最大值也可能是f(x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)滿足f(x)=f($\frac{1}{x}$),當(dāng)x∈[1,3]時(shí),f(x)=lnx,若在區(qū)間[$\frac{1}{3}$,3]內(nèi),函數(shù)g(x)=f(x)-ax與x軸有三個(gè)不同的交點(diǎn),則實(shí)數(shù)a的取值范圍是[$\frac{ln3}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知0°<α<90°,0°<α+β<90°,3sinβ=sin(2α+β),則tanβ的最大值是$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案