分析 (1)利用賦值法,令y=x,即可證明f(3x)=3f(x),令x=y=0,求出f(0)=0,再令y=0,即可證明f(2x)=2f(x);
(2)由(1)知f(2x+y)=f(2x)+f(y),直接設2x1<x2,根據x>0,f(x)<0;得到f(x2)=f[(x2-2x1)+2x1]=f(x2-x1)+f(2x1)<f(2x1),即可得到結論;
(2)先根據已知條件得到f(1)=-$\frac{1}{6}$,再利用對數(shù)的運算性質,和已知函數(shù)的單調性得到log2x(x-2)>1=log22,再根據對數(shù)的性質得打關于x的不等式組,解得即可得到結論.
解答 解:(1)證明:令y=x,
則f(2x+x)=2f(x)+f(x),即f(3x)=3f(x),
令x=y=0,
∴f(0+0)=2f(0)+f(0),
即f(0)=0,
再令y=0,
∴f(2x)=2f(x)+f(0)=2f(x);
(2)由(1)知,f(2x+y)=f(2x)+f(y),
設2x1<x2,則x2-2x1>0,
∵當x>0時,f(x)<0,
∴f(x2-2x1)<0,
∴f(x2)=f[(x2-2x1)+2x1]=f(x2-2x1)+f(2x1)<f(2x1)
即f(x2)<f(2x1),
∴函數(shù)f(x)在R上為單調減函數(shù);
(3)令x=y=2,
∴f(6)=2f(2)+f(2)=3f(2)=-1,
再令x=1,y=0,
∴f(2)=2f(1)+f(0),
∴f(1)=$\frac{1}{2}$f(2)=-$\frac{1}{6}$,
∵f(log2$\frac{x-2}{x}$)+6f(log2$\root{3}{x}$)<-$\frac{1}{6}$,
∴f(log2$\frac{x-2}{x}$+6log2$\root{3}{x}$)<f(1),
∴f(log2x(x-2))<f(1),
∵函數(shù)f(x)在R上為單調減函數(shù),
∴l(xiāng)og2x(x-2)>1=log22
∴$\left\{\begin{array}{l}{x(x-2)>0}\\{x(x-2)>2}\end{array}\right.$,
解得x>1+$\sqrt{3}$,或x<1-$\sqrt{3}$,
∴不等式的解集為{x|x>1+$\sqrt{3}$,或x<1-$\sqrt{3}$}.
點評 考查抽象函數(shù)及其應用,以及利用函數(shù)單調性的定義判斷函數(shù)的單調性,并根據函數(shù)的單調性解函數(shù)值不等式,體現(xiàn)了轉化的思想,在轉化過程中一定注意函數(shù)的定義域.解決抽象函數(shù)的問題一般應用賦值法,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4a | B. | 4a-m | C. | 4a+2m | D. | 4a-2m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 雙曲線和一條直線 | B. | 雙曲線和一條射線 | ||
C. | 雙曲線的一支和一條射線 | D. | 雙曲線的一支和一條直線 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com