5.若函數(shù)f(x)=3x-1,則f-1(x)=log3(x+1)(x>-1).

分析 由y=3x-1,解得x=log3(y+1)(y>-1).把x與y互換即可得出反函數(shù).

解答 解:由y=3x-1,解得x=log3(y+1)(y>-1).
把x與y互換可得:y=log3(x+1)(x>-1).
則f-1(x)=log3(x+1)(x>-1).
故答案為:log3(x+1)(x>-1).

點評 本題考查了方程的解法、反函數(shù)的求法,考查了分類討論方法、推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.若x∈[0,$\frac{π}{4}$],則所數(shù)y=$\sqrt{2}$sin(2x+$\frac{π}{4}$)的最大值為$\sqrt{2}$,相應的x值為$\frac{π}{8}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若loga$\frac{1}{27}$=-3,則底數(shù)a=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.下列程序語句是求函數(shù)y=|x-4|+1的函數(shù)值,則①處為( 。
A.y=3-xB.y=x-5C.y=5-xD.y=ABS(x-4)+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,四棱錐的底面ABCD是平行四邊形,M是AD中點,N是PC中點.求證:MN∥平面PAB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.函數(shù)f(x)對任意的x,y∈R都有f(2x+y)=2f(x)+f(y),且當x>0時,f(x)<0.
(1)求證:f(3x)=3f(x),f(2x)=2f(x);
(2)判斷f(x)在R上的單調(diào)性并證明.
(3)若f(6)=-1解不等式f(log2$\frac{x-2}{x}$)+6f(log2$\root{3}{x}$)<-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知tanθ=-2,-$\frac{π}{2}$<θ<0,求cos(θ+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知實數(shù)x、y滿足方程x2+y2-4x+1=0,$\frac{y}{x-5}$的最大值$\frac{\sqrt{2}}{2}$和最小值-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知直線的斜截式方程是y=$\sqrt{3}$x+1,則此直線的傾斜角為( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步練習冊答案