【題目】某地政府為了對房地產市場進行調控決策,統(tǒng)計部門對外來人口和當?shù)厝丝谶M行了買房的心理預期調研,用簡單隨機抽樣的方法抽取了110人進行統(tǒng)計,得到如下列聯(lián)表(不全):
已知樣本中外來人口數(shù)與當?shù)厝丝跀?shù)之比為3:8.
(1)補全上述列聯(lián)表;
(2)從參與調研的外來人口中用分層抽樣方法抽取6人,進一步統(tǒng)計外來人口的某項收入指標,若一個買房人的指標記為3,一個猶豫人的指標記為2,一個不買房人的指標記為1,現(xiàn)在從這6人中再隨機選取3人,求選取的3人的指標之和大于5的概率.
【答案】(1)見解析(2)
【解析】試題分析:(1)根據(jù)比例關系先確定外來人口數(shù)和當?shù)厝丝跀?shù),求出猶豫人數(shù),填入表格即可,(2)先利用枚舉法確定6人中隨機選取3人總事件數(shù)為20種,再從中選出指標之和大于5的事件數(shù),最后根據(jù)古典概型概率公式求概率
試題解析:解:(Ⅰ)設外來人口中和當?shù)厝丝谥械莫q豫人數(shù)分別為人, 人,則
解得
買房 | 不買房 | 猶豫 | 總計 | |
外來人口(單位:人) | 5 | 10 | 15 | 30 |
當?shù)厝丝冢▎挝唬喝耍?/span> | 20 | 10 | 50 | 80 |
總計 | 25 | 20 | 65 | 110 |
(Ⅱ)從參與調研的外來人口中用分層抽樣方法抽取的人中,買房1人,不買房2人,猶豫3人,
這三類人分別用,N1,N2,D1,D2,D3表示,
從這人中再隨機選取人,列出所有選取情況及相應指標之和如下:
, , , , , , , , , , , , , , , , , , , ,
所有選取情況有種,其中指標之和大于的有種,
所以選取的人的指標之和大于的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】設分別為雙曲線的左、右頂點,雙曲線的實軸長為,焦點到漸近線的距離為.
(1)求雙曲線的方程;
(2)已知直線與雙曲線的右支交于兩點,且在雙曲線的右支上存在點,使,求的值及點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線()的焦點,斜率為的直線交拋物線于, ()兩點,且.
(1)求該拋物線的方程;
(2)為坐標原點, 為拋物線上一點,若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代著名數(shù)學經典.其中對勾股定理的論術比西方早一千多年,其中有這樣一個問題:“今有圓材埋在壁中,不知大小.以鋸鋸之,深一寸,鋸道長一尺.問徑幾何?”其意為:今有一圓柱形木材,埋在墻壁中,不知其大小,用鋸去鋸該材料,鋸口深1寸,鋸道長1尺.問這塊圓柱形木料的直徑是多少?長為1丈的圓柱形木材部分鑲嵌在墻體中,截面圖如圖所示(陰影部分為鑲嵌在墻體內的部分).已知弦尺,弓形高寸,估算該木材鑲嵌在墻中的體積約為( )
(注:1丈=10尺=100寸, , )
A. 633立方寸 B. 620立方寸 C. 610立方寸 D. 600立方寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,M、N、K分別是正方體ABCD﹣A1B1C1D1的棱AB,CD,C1D1的中點.求證:
(1)AN∥平面A1MK;
(2)MK⊥平面A1B1C.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動點到直線的距離是它到點的距離的倍.
(1)求動點的軌跡的方程;
(2)設軌跡上一動點滿足: ,其中是軌跡上的點,且直線與的斜率之積為,若為一動點, , 為兩定點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣x)的定義域為( 。
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com