10.已知等比數(shù)列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項和Sn

分析 (I)利用等比數(shù)列的通項公式即可得出;
(II)a32=a10,可得${a}_{1}^{2}{q}^{4}$=${a}_{1}{q}^{9}$,解得a1,可得an.再利用等比數(shù)列的前n項和公式即可得出.

解答 解:(I)∵2(an+an+2)=5an+1,n∈N*,∴$2{a}_{1}({q}^{n-1}+{q}^{n+1})$=5${a}_{1}{q}^{n}$,化為2q2-5q+2=0,q>1,解得q=2.
(II)a32=a10,∴${a}_{1}^{2}{q}^{4}$=${a}_{1}{q}^{9}$,∴${a}_{1}={q}^{5}$=32.
∴${a}_{n}=32×{2}^{n-1}$=2n+4
∴$\frac{{a}_{n}}{{3}^{n}}$=$\frac{{2}^{n+4}}{{3}^{n}}$=16×$(\frac{2}{3})^{n}$
其前n項和Sn=16×$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$=32$[1-(\frac{2}{3})^{n}]$.

點評 本題考查了等比數(shù)列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知定義域為R的奇函數(shù)滿足f(x+4)=f(x)+f(2),且x∈(0,2)時,f(x)=lnx,則函數(shù)f(x)在區(qū)間[-4,4]上有9個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知$f(\sqrt{x}+1)=x+2\sqrt{x}$,則函數(shù)f(x+1)的解析式為f(x+1)=x2+2x,x≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.畫出下列函數(shù)在長度為一個周期的閉區(qū)間上的簡圖(有條件的請用計算器或計算機檢驗).
(1)y=$\frac{1}{2}$sinx;
(2)y=sin3x;
(3)y=sin(x-$\frac{π}{3}$);
(4)y=2sin(2x-$\frac{π}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某類題庫中有9道題,其中5道甲類題,每題10分,4道乙類題,每題5分,現(xiàn)從中任意選取三道題組成問卷,記隨機變量X為此問卷的總分.
(Ⅰ)求X的分布列;
(Ⅱ)求X的數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若方程x2+y2-x+2y+m=0表示一個圓,則m的取值范圍為(-∞,$\frac{5}{4}$);此時,它的圓心坐標(biāo)為($\frac{1}{2}$,-1);若m=1,則半徑為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.兩角和與差的三角函數(shù)公式的理解:
(1)正弦公式概括為sin(α±β)=sinαcosβ±cosαsinβ.
(2)余弦公式概括為cos(α±β)=cosαcosβ$\overline{+}$sinαsinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.直線x-5y+10=0在x軸、y軸上的截距分別為( 。
A.-10和2B.2和-10C.1和-5D.-5和1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.直角△ABC,∠C=90°,若AC=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.

查看答案和解析>>

同步練習(xí)冊答案