20.直角△ABC,∠C=90°,若AC=2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=4.

分析 利用平面向量數(shù)量積的定義得$\overrightarrow{AB}$•$\overrightarrow{AC}$=AB•AC•cosA,而AB•cosA=AC=2,從而計(jì)算出答案.

解答 解:∵AB•cosA=AC=2,
∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=AB•AC•cosA=AC2=4.
故答案為:4.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知等比數(shù)列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求數(shù)列{$\frac{{a}_{n}}{{3}^{n}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知sin(α+$\frac{π}{6}$)=$\frac{1}{3}$,α∈($\frac{π}{3}$,$\frac{5π}{6}$),則sin($\frac{π}{3}$-α)=-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)向量$\overrightarrow{a}$=(2,x),$\overrightarrow$=(1,3),若$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則x的取值范圍是{x|x>-$\frac{2}{3}$且x≠6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,以原點(diǎn)O為圓心,以橢圓C的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線x-y+2=0相切.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)過橢圓C的右焦點(diǎn)F作斜率為-$\frac{\sqrt{2}}{2}$的直線l交橢圓C于A、B兩點(diǎn),且$\overrightarrow{OA}$+$\overrightarrow{OD}$=$\overrightarrow{BO}$,又點(diǎn)D關(guān)于坐標(biāo)原點(diǎn)O的對(duì)稱點(diǎn)為點(diǎn)E,試問點(diǎn)A,B,D,E四點(diǎn)是否共圓?若是,求出該圓的標(biāo)準(zhǔn)方程;若不是,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知二次函數(shù)f(x)=ax2+bx+c的圖象過點(diǎn)(0,1),且有唯一的零點(diǎn)-1.
(I)求f(x)的表達(dá)式;
(Ⅱ)求函數(shù)F(x)=f(x)-7x,x∈[-2,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知分段函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}}&{x≤0}\\{2x-1}&{x>0}\end{array}\right.$,則下列正確的為( 。
A.f(2)=4B.f(2)=-4C.f(-2)=-5D.f(-2)=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知雙曲線C:$\frac{{x}^{2}}{3}$-y2=1的右焦點(diǎn)為F,點(diǎn)E(0,1),點(diǎn)P(x,y)是雙曲線C的漸近線上一點(diǎn),O為原點(diǎn),且$\overrightarrow{OP}$=λ$\overrightarrow{OF}$+$\overrightarrow{OE}$,則λ=( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在四邊形ABCD中,∠A=∠B=∠C,點(diǎn)E在邊AB上,∠AED=60°,則一定有( 。
A.∠ADE=20°B.∠ADE=30°C.∠ADE=$\frac{1}{3}$∠ADCD.∠ADE=$\frac{1}{2}$∠ADC

查看答案和解析>>

同步練習(xí)冊(cè)答案