16.已知角θ的始邊與x軸的非負(fù)半軸重合,終邊過(guò)點(diǎn)M(-3,4),則cos2θ的值為( 。
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.$-\frac{24}{25}$D.$\frac{24}{25}$

分析 由條件利用任意角的三角函數(shù)的定義,求出sinθ,利用二倍角公式即可計(jì)算得解.

解答 解:∵角θ的終邊經(jīng)過(guò)點(diǎn)P(-3,4),
∴x=-3,y=4,r=|OP|=5,
∴sinθ=$\frac{y}{r}$=$\frac{4}{5}$,則cos2θ=1-2sin2θ=-$\frac{7}{25}$.
故選:A.

點(diǎn)評(píng) 本題主要考查任意角的三角函數(shù)的定義,兩點(diǎn)間的距離公式,二倍角公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{2}$,以原點(diǎn)為圓心,橢圓C的短軸長(zhǎng)為直徑的圓與直線x-y+2=0相切.
(1)求橢圓C的方程;
(2)已知點(diǎn)P(0,1),Q(0,2),設(shè)M,N是橢圓C上關(guān)于y軸對(duì)稱的不同的兩點(diǎn),直線PM與QN相交于點(diǎn)T,求證:點(diǎn)T在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.執(zhí)行如圖所救援程序框圖,輸出s的值為( 。
A.1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2017}$-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.從旅游景點(diǎn)A到B有一條100km的水路,某輪船公司開(kāi)設(shè)一個(gè)游輪觀光項(xiàng)目.已知游輪每小時(shí)使用燃料費(fèi)用與速度的立方成正比例,其他費(fèi)用為每小時(shí)3240元,游輪最大時(shí)速為50km/h,當(dāng)游輪的速度為10km/h時(shí),燃料費(fèi)用為每小時(shí)60元,設(shè)游輪的航速為vkm/h,游輪從A到B一個(gè)單程航行的總費(fèi)用為S元.
(1)將游輪從A到B一個(gè)單程航行的總費(fèi)用S表示為游輪的航速v的函數(shù)S=f(v);
(2)該游輪從A到B一個(gè)單程航行的總費(fèi)用最少時(shí),游輪的航速為多少,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知圓B:(x-1)2+(y-1)2=2,過(guò)原點(diǎn)O作兩條不同的直線l1,l2與圓B分別交于P,Q.
(1)過(guò)圓心B作BA⊥OP,BC⊥OQ,垂足分別為點(diǎn)A,C,求過(guò)四點(diǎn)O,A,B,C的圓E的方程,并判斷圓B與圓E的位置關(guān)系;
(2)若l1與l2的傾斜角互補(bǔ),試用l1的傾斜角α表示△OPQ的面積,并求其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知a為實(shí)數(shù),函數(shù)$f(x)=1-\frac{a}{{{2^x}+1}}$.
(1)若f(-1)=-1,求a的值;
(2)是否存在實(shí)數(shù)a,使得f(x)為奇函數(shù);
(3)若函數(shù)f(x)在其定義域上存在零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={-1,0,1,3,4,5},B={x|x2-4x+3≤0},則A∩B=( 。
A.{1}B.{3}C.{1,3}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.一個(gè)四面體的三視圖如圖所示,則該四面體的外接球的表面積為( 。
A.$\frac{4π}{3}$B.C.$\frac{2π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,在直角梯形PBCD中,PB∥DC,DC⊥BC,點(diǎn)A在邊PB上,AD∥BC,PB=3BC=6,現(xiàn)沿AD將△PAD折起,使平面PAD⊥平面ABCD.
(Ⅰ)當(dāng)CD=BC時(shí),證明:直線BD⊥平面PAC;
(Ⅱ)當(dāng)三棱錐P-ABD的體積取得最大值時(shí),求平面PBD與平面PCD所成銳二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案