11.已知圓B:(x-1)2+(y-1)2=2,過原點(diǎn)O作兩條不同的直線l1,l2與圓B分別交于P,Q.
(1)過圓心B作BA⊥OP,BC⊥OQ,垂足分別為點(diǎn)A,C,求過四點(diǎn)O,A,B,C的圓E的方程,并判斷圓B與圓E的位置關(guān)系;
(2)若l1與l2的傾斜角互補(bǔ),試用l1的傾斜角α表示△OPQ的面積,并求其最大值.

分析 (1)求出圓心坐標(biāo)與半徑,可得圓E的方程,即可得出結(jié)論;
(2)求出直線與圓相交的弦長,可得面積,利用三角函數(shù)知識得出結(jié)論.

解答 解:(1)過四點(diǎn)O,A,B,C的圓E的方程是以O(shè)B為直徑的圓,圓E的圓心為($\frac{1}{2}$,$\frac{1}{2}$),半徑為$\frac{\sqrt{2}}{2}$,
∴圓E的方程為:(x-$\frac{1}{2}$)2+(y-$\frac{1}{2}$)2=$\frac{1}{2}$.
∵圓心距=$\sqrt{(1-\frac{1}{2})^{2}+(1-\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$=$\sqrt{2}-\frac{\sqrt{2}}{2}$,
∴圓B與圓E相內(nèi)切;
(2)設(shè)l1的方程為y=xtanα,圓心B(1,1)到直線l1的距離d=$\frac{|tanα-1|}{\sqrt{ta{n}^{2}α+1}}$,
直線l1與圓相交的弦長m=$\frac{2|tanα+1|}{\sqrt{ta{n}^{2}α+1}}$,
以-tanα代替tanα,可得直線l2與圓相交的弦長n=2$\frac{|tanα-1|}{\sqrt{ta{n}^{2}α+1}}$,
∴S△OPQ=$\frac{1}{2}mn|sin2α|$=2|$\frac{ta{n}^{2}α-1}{ta{n}^{2}α+1}$||sin2α|=|sin4α|≤1,
當(dāng)且僅當(dāng)α=$\frac{π}{8}$,$\frac{3π}{8}$,$\frac{5π}{8}$,$\frac{7π}{8}$時(shí)等號成立,故最大值為1.

點(diǎn)評 本題考查直線方程,考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.某小區(qū)內(nèi)有一條形狀如圖的溝渠,溝沿是兩條平行線段,溝渠寬AB為20厘米,溝渠的直截面ABO為一段拋物線,拋物線頂點(diǎn)為O,對稱軸與地面垂直,溝渠深20厘米,溝渠中水深10厘米.
(1)求水面寬為多少厘米;
(2)若要把這條溝渠改挖(不準(zhǔn)填土)成直截面為等腰梯形的溝渠,是溝渠的底面與地面平行,則改挖后的溝渠底部寬為多少厘米時(shí),所挖土最少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)D(2,y0)在拋物線C上,且|DF|=3,直線y=x-1與拋物線C交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求拋物線C的方程;
(2)求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)y=x3-2x2+x的單調(diào)遞減區(qū)間為($\frac{1}{3}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù) f (x)=x2ln x,若關(guān)于x的不等式 f (x)-kx+1≥0恒成立,則實(shí)數(shù)k 的取值范圍是(-∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知角θ的始邊與x軸的非負(fù)半軸重合,終邊過點(diǎn)M(-3,4),則cos2θ的值為( 。
A.$-\frac{7}{25}$B.$\frac{7}{25}$C.$-\frac{24}{25}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列命題中真命題的個(gè)數(shù)是(  )
①“a>b”是“a2>b2”的充要條件;
②“a>b”是“a3>b3”的充要條件;
③“a>b”是“|a|>|b|”的充分條件;
④“a>b”是“ac2≤bc2”的必要條件.
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.《數(shù)學(xué)統(tǒng)綜》有如下記載:“有凹線,取三數(shù),小小大,存三角”.意思是說“在凹(或凸)函數(shù)(函數(shù)值為正)圖象上取三個(gè)點(diǎn),如果在這三點(diǎn)的縱坐標(biāo)中兩個(gè)較小數(shù)之和大于最大的數(shù),則存在將這三點(diǎn)的縱坐標(biāo)值作為三邊長的三角形”.現(xiàn)已知凹函數(shù)f(x)=x2-2x+2,在$[\frac{1}{3},{m^2}-m+2]$上任取三個(gè)不同的點(diǎn)(a,f(a)),(b,f(b)),(c,f(c)),均存在以f(a),f(b),f(c)為三邊長的三角形,則實(shí)數(shù)m的取值范圍為( 。
A.[0,1]B.$[0,\frac{{\sqrt{2}}}{2})$C.$(0,\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{2}}}{2},\sqrt{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xoy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t為參數(shù)).
(1)若C1與C2只有一個(gè)公共點(diǎn),求實(shí)數(shù)m的值;
(2)若θ=$\frac{π}{3}$與C1交于點(diǎn)A(異于極點(diǎn)),θ=$\frac{5π}{6}({ρ∈R})$與C1交于點(diǎn)B(異于極點(diǎn)),與C2交于點(diǎn)C,若△ABC的面積為3$\sqrt{3}$,求實(shí)數(shù)m(m<0)的值.

查看答案和解析>>

同步練習(xí)冊答案