1.如圖,已知AB,CD是外離兩圓⊙O1,與⊙O2的外公共切線,切點(diǎn)為A,B,C,求證:A,B,C,D四點(diǎn)共圓.

分析 連接AC,O1A,O1C,BD,O2B,O2D,證明∠O1CA=∠O2BD,然后證明A,B,C,D四點(diǎn)共圓.

解答 證明:連接AC,O1A,O1C,BD,O2B,O2D,則
因?yàn)锳B,CD是外離兩圓⊙O1,與⊙O2的外公共切線,
所以△O1AC∽△O2BD,
所以∠O1CA=∠O2BD,
所以∠ACD+∠ABD=∠O1CA+∠OCD+∠OBA-∠O2BD=180°,
所以A,B,C,D四點(diǎn)共圓.

點(diǎn)評(píng) 本題考查圓的切線的性質(zhì),考查四點(diǎn)共圓,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若方程f(x)=c(c∈R),有兩個(gè)不相等的實(shí)數(shù)根x1、x2,求證:$f'(\frac{{{x_1}+{x_2}}}{2})>0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=$\frac{1+i}{i}$(i虛數(shù)單位)在復(fù)平面上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知集合M={x|2x-x2>0},N={x|x2+y2=1},則M∩N=( 。
A.[-1,2)B.(0,1)C.(0,1]D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實(shí)數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對(duì)的邊,若$\frac{π}{2}$<A<π,f(A)=0,且b=2$\sqrt{2}$,a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在平面直角坐標(biāo)系xOy中,過雙曲線C:x2-$\frac{{y}^{2}}{3}$=1的右焦點(diǎn)F作x軸的垂線l,則l與雙曲線C的兩條漸近線所圍成的三角形的面積是$4\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,摩天輪的半徑OA為50m,它的最低點(diǎn)A距地面的高度忽略不計(jì).地面上有一長(zhǎng)度為240m的景觀帶MN,它與摩天輪在同一豎直平面內(nèi),且AM=60m.點(diǎn)P從最低點(diǎn)A處按逆時(shí)針方向轉(zhuǎn)動(dòng)到最高點(diǎn)B處,記∠AOP=θ,θ∈(0,π).

(1)當(dāng)θ=$\frac{2π}{3}$ 時(shí),求點(diǎn)P距地面的高度PQ;
(2)試確定θ 的值,使得∠MPN取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知全集U={x|x2≥1},集合A={x|ln(x-1)≤0},則∁UA=(  )
A.{x|x≤-1或x>2}B.{x|x>2}C.{x|x≤-1或x=1或x>2}D.{x|x=1或x>2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.經(jīng)過圓(x-2)2+y2=1的圓心且與直線2x-y+1=0平行的直線方程是( 。
A.2x-y-4=0B.2x-y+4=0C.x+2y-2=0D.x+2y+2=0

查看答案和解析>>

同步練習(xí)冊(cè)答案