已知不等式ax2-3x+2<0的解集為(1,b).
(1)求a、b的值;      
(2)解關(guān)于x的不等式ax2+bm<(am+b)x.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由題意,1,b是方程ax2-3x+2=0的解,且a>0.(2)討論m的取值從而解不等式.
解答: 解:(1)∵不等式ax2-3x+2<0的解集為(1,b);
∴1+b=
3
a
,1×b=
2
a
且a>0;
解得:a=1,b=2.
(2)(x-m)(x-2)<0,
當(dāng)m<2時(shí),m<x<2;
當(dāng)m>2時(shí),2<x<m;
當(dāng)m=2時(shí),x∈∅.
點(diǎn)評(píng):本題考查了二次方程與二次不等式的關(guān)系及二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,5,8},B={1,3,5,8,13},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的個(gè)條棱中,最長(zhǎng)的棱的長(zhǎng)度為( 。
A、6
2
B、4
2
C、6
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=
2
x-1

(1)用函數(shù)單調(diào)性證明函數(shù)y=
2
x-1
在(1,+∞)上是減函數(shù);
(2)求函數(shù)y=
2
x-1
在區(qū)間[2,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex(ax2-2x-2),a∈R且a≠0.
(1)若曲線y=f(x)在點(diǎn)P(2,f(2))處的切線垂直于y軸,求實(shí)數(shù)a的值;
(2)當(dāng)a>0時(shí),求函數(shù)f(|cosx|)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為銳角三角形的ABC外心,|
AB
|=16,|
AC
|=10
2
,
AO
=x
AB
+y
AC
,32x+25y=25,則|
AO
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+1
2x-1

(1)若f(a)=2,求a的值;
(2)證明f(x)在x∈(0,+∞)單調(diào)遞減;
(3)若x∈(1,4),求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m∈R,設(shè)命題p:方程
x2
m
+
y2
3-m
=1表示焦點(diǎn)在x軸上的雙曲線.命題q:?x∈R,x2+2mx+
9
4
<0.若p∨q為真命題,p∧q為假命題.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x3+x2(x∈R),g(x)滿足g′(x)=
a
x
(a∈R,x>0),且g(e)=a,e為自然對(duì)數(shù)的底數(shù).
(Ⅰ)已知h(x)=e1-xf(x),求h(x)在(1,h(1))處的切線方程;
(Ⅱ)若存在x∈[1,e],使得g(x)≥-x2+(a+2)x成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案