3.如圖:三棱錐A-BCD的底面ABC是直角三角形,AC⊥AB,AC=AB=4,DA⊥平面ABC,E是BD的中點(diǎn).
(1)求證:AE與BC不垂直;
(2)若此三棱錐的體積為$\frac{32}{3}$,求異面直線AE與DC所成角的大。

分析 (1)采用反證法,假設(shè)AE⊥BC,則BC⊥平面DAB,于是BC⊥AB,得出矛盾;
(2)取BC中點(diǎn)F,連結(jié)EF,AF,則∠AEF為異面直線所成的角,根據(jù)棱錐的體積和勾股定理,中位線定理求出△AEF的三邊長(zhǎng),利用余弦定理計(jì)算∠AEF.

解答 解:(1)假設(shè)AE⊥BC,
∵DA⊥平面ABC,BC?平面ABC,
∴DA⊥BC,
又DA?平面DAB,AE?平面DAB,DA∩AE=A,
∴BC⊥平面DAB,∵AB?平面DAB,
∴BC⊥AB,與AC⊥AB矛盾.
∴AE與BC不垂直.
(2)∵DA⊥平面ABC,S△ABC=$\frac{1}{2}$AB•AC=8,
∴三棱錐體積V=$\frac{1}{3}{S}_{△ABC}•DA$=$\frac{8}{3}•DA$=$\frac{32}{3}$,∴DA=4.
∴BD=$\sqrt{A{B}^{2}+D{A}^{2}}$=4$\sqrt{2}$,CD=$\sqrt{D{A}^{2}+A{C}^{2}}$=4$\sqrt{2}$,
設(shè)BC中點(diǎn)為F,連EF,AF,則EF=$\frac{1}{2}$CD=2$\sqrt{2}$,AF=$\frac{1}{2}BC$=2$\sqrt{2}$,AE=$\frac{1}{2}$BD=2$\sqrt{2}$.
∴△AEF是正三角形,∴∠AEF=60°.
∵E是DB中點(diǎn),則EF∥DC,∴∠AEF是AE與DC所成角.
即異面直線AE與DC所成角的大小為60°.

點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),異面直線所成的角,構(gòu)造平行線作出空間角的平面角是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知復(fù)數(shù)z=$\frac{1-3i}{i-1}$,則在復(fù)平面上$\overline{z}$所對(duì)應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知(x-2)n的二項(xiàng)展開(kāi)式有7項(xiàng),則展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng)的系數(shù)是(  )
A.-280B.-160C.160D.560

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.四棱錐P-ABCD中,PD⊥底面ABCD,AD∥BC,AC⊥DB,∠CAD=60°,AD=2,PD=1.
(Ⅰ)證明:AC⊥BP;
(Ⅱ)求二面角C-AP-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,斜四棱柱ABCD-A1B1C1D1的底面是邊長(zhǎng)為1的正方形,側(cè)面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(Ⅰ)求證:平面AB1C⊥平面BDC1
(Ⅱ)求四面體AB1C1C的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在三角形ABC中,若sin2Ccos2B+$\frac{1}{2}$sin2Csin2B=0,且cos2C+cosC=0,則△ABC是(  )
A.直角非等腰三角形B.等腰非等邊三角形
C.等腰直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.一個(gè)幾何體的三視圖如圖所示,那么這個(gè)幾何體的表面積是(  )
A.20+2$\sqrt{5}$B.20+2$\sqrt{3}$C.16+2$\sqrt{5}$D.16+2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若$\fracd2cajzr{dx}$${∫}_{0}^{{e}^{-x}}$f(t)dt=ex,則f(x)=(  )
A.-x-2B.-x2C.e-2xD.-e2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=lnx+x2-2ax+1(a為常數(shù)).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若存在x0∈(0,1],使得對(duì)任意的a∈(-2,0],不等式2mea+f(x0)>a2+2a+4(其中e為自然對(duì)數(shù)的底數(shù))都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案