A. | -x-2 | B. | -x2 | C. | e-2x | D. | -e2x |
分析 根據(jù)導(dǎo)數(shù)的函數(shù)先求原函數(shù),再求函數(shù)的解析式即可.
解答 解:∵$\frac7zp1fi1{dx}$${∫}_{0}^{{e}^{-x}}$f(t)dt=ex,
∴${∫}_{0}^{{e}^{-x}}$f(t)dt=ex+c,
令f(t)的原函數(shù)為F(t),
∴F(t)|$\left.\begin{array}{l}{{e}^{-x}}\\{0}\end{array}\right.$=ex+c,
∴F(e-x)-F(0)=ex+c,
∴f(e-x)(-e-x)=ex,
∴f(e-x)=-e2x=-(e-x)-2,
∴f(t)=-t-2
∴f(x)=-x-2,
故選:A.
點(diǎn)評(píng) 本題主要考查導(dǎo)數(shù)、定積分,屬于中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1+2$\sqrt{2}$,+∞) | B. | (-∞,1-2$\sqrt{2}$] | C. | [1-2$\sqrt{2}$,0] | D. | [-2,0] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a-1)(b-1)<0 | B. | (a-1)(a-b)>0 | C. | (b-1)(b-a)<0 | D. | (b-1)(b-a)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com