【題目】在空間中,下列命題正確的是

A.如果一個(gè)角的兩邊和另一角的兩邊分別平行,那么這兩個(gè)角相等

B.兩條異面直線(xiàn)所成的有的范圍是

C.如果兩個(gè)平行平面同時(shí)與第三個(gè)平面相交,那么它們的交線(xiàn)平行

D.如果一條直線(xiàn)和平面內(nèi)的一條直線(xiàn)平行,那么這條直線(xiàn)和這個(gè)平面平行

【答案】C

【解析】

根據(jù)兩個(gè)角可能互補(bǔ)判斷A;根據(jù)兩條異面直線(xiàn)所成的角不能是零度,判斷B;根據(jù)根據(jù)兩個(gè)平面平行的性質(zhì)定理知判斷C;利用直線(xiàn)與這個(gè)平面平行或在這個(gè)平面內(nèi)判斷D.

如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,這兩個(gè)角相等或互補(bǔ),A不正確;
兩條異面直線(xiàn)所成的角不能是零度,B不正確;
根據(jù)兩個(gè)平面平行的性質(zhì)定理知C正確;
如果一條直線(xiàn)和一個(gè)平面內(nèi)的一條直線(xiàn)平行,那么這條直線(xiàn)與這個(gè)平面平行或在這個(gè)平面內(nèi),D不正確,綜上可知只有C的說(shuō)法是正確的,故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù).

(1)若函數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)平行,求實(shí)數(shù)的值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(3)在(1)的條件下,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓)的離心率是,點(diǎn)在短軸上,且。

(1)球橢圓的方程;

(2)設(shè)為坐標(biāo)原點(diǎn),過(guò)點(diǎn)的動(dòng)直線(xiàn)與橢圓交于兩點(diǎn)。是否存在常數(shù),使得為定值?若存在,求的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若函數(shù)處的切線(xiàn)垂直于軸,求實(shí)數(shù)的值;

2)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間;

3)若時(shí),恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從一批草莓中,隨機(jī)抽取個(gè),其重量(單位:克)的頻率分布表如下:

分組(重量)





頻數(shù)(個(gè))





已知從個(gè)草莓中隨機(jī)抽取一個(gè),抽到重量在的草莓的概率為

1)求出,的值;

2)用分層抽樣的方法從重量在的草莓中共抽取個(gè),再?gòu)倪@個(gè)草莓中任取個(gè),求重量在中各有個(gè)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方體ABCD - A1B1C1D1的棱長(zhǎng)為2 E、F、G分別為BC、CC1、BB1的中點(diǎn),則(

A.直線(xiàn)與直線(xiàn)AF垂直B.直線(xiàn)A1G與平面AEF平行

C.平面截正方體所得的截面面積為D.點(diǎn)C與點(diǎn)G到平面AEF的距離相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線(xiàn)的方程為,直線(xiàn)與曲線(xiàn)交于兩點(diǎn).

(1)求直線(xiàn)的標(biāo)準(zhǔn)參數(shù)方程;

(2)求的長(zhǎng);

(3)以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)的極坐標(biāo)為;求點(diǎn)到線(xiàn)段中點(diǎn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖像上有與軸平行的切線(xiàn),求參數(shù)的取值范圍;

2)若函數(shù)處取得極值,且時(shí),恒成立,求參數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平行四邊形中,,沿折起,使二面角是大小為銳角的二面角,設(shè)在平面上的射影為

(1)當(dāng)為何值時(shí),三棱錐的體積最大?最大值為多少?

(2)當(dāng)時(shí),求的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案