精英家教網 > 高中數學 > 題目詳情

【題目】已知圓,,動圓C與圓,都相切,則動圓C的圓心軌跡E的方程為________________;斜率為的直線l與曲線E僅有三個公共點,依次為P,Q,R,則的值為________.

【答案】

【解析】

根據動圓與圓,的位置關系,分情況討論可知動圓C的圓心軌跡為橢圓,然后計算即可,然后假設直線方程,根據直線于曲線E的位置關系以及弦長公式,可得結果.

設動圓的半徑為

由題可知:

當動圓C與圓外切,與圓內切時

所以可知動圓圓心軌跡為橢圓

所以,故

所以動圓C的圓心軌跡E的方程為

當動圓C與圓內切,與圓內切時

所以可知動圓圓心軌跡為橢圓

所以,故

所以動圓C的圓心軌跡E的方程為

所以動圓C的圓心軌跡E的方程為

設直線l方程為,

由直線l與曲線E僅有三個公共點

則直線l相切于點Q,與相交于點P,R

所以

,把代入可得

故答案為:,;

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖幾何體ADM-BCN中, 是正方形, , , , .

(Ⅰ)求證: ;

(Ⅱ)求證:

(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元前5世紀,古希臘哲學家芝諾發(fā)表了著名的阿基里斯悖論:他提出讓烏龜在跑步英雄阿基里斯前面1000米處開始與阿基里斯賽跑,并且假定阿基里斯的速度是烏龜的10.當比賽開始后,若阿基里斯跑了1000米,此時烏龜便領先他100米,當阿基里斯跑完下一個100米時,烏龜領先他10米,當阿基里斯跑完下一個10米時,烏龜先他1....所以,阿基里斯永遠追不上烏龜.按照這樣的規(guī)律,若阿基里斯和烏龜的距離恰好為0.001米時,烏龜爬行的總距離為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,側面為邊長為的菱形,側面為矩形,其中平面,點的中點.

1)證明:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐中,,,,,,則三棱錐外接球的表面積為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知某種新型病毒的傳染能力很強,給人們生產和生活帶來很大的影響,所以創(chuàng)新研發(fā)疫苗成了當務之急.為此,某藥企加大了研發(fā)投入,市場上這種新型冠狀病毒的疫苗的研發(fā)費用(百萬元)和銷量(萬盒)的統計數據如下:

研發(fā)費用(百萬元)

2

3

6

10

13

14

銷量(萬盒)

1

1

2

2.5

4

4.5

1)根據上表中的數據,建立關于的線性回歸方程(用分數表示);

2)根據所求的回歸方程,估計當研發(fā)費用為1600萬元時,銷售量為多少?

參考公式:,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】遼寧省六校協作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實驗班的名學生期中考試的語文、數學成績都不低于分,其中語文成績的頻率分布直方圖如圖所示,成績分組區(qū)間是:、、、、

1)根據頻率分布直方圖,估計這名學生語文成績的中位數和平均數;(同一組數據用該區(qū)間的中點值作代表;中位數精確到

2)若這名學生語文成績某些分數段的人數與數學成績相應分數段的人數之比如下表所示:

分組區(qū)間

從數學成績在的學生中隨機選取人,求選出的人中恰好有人數學成績在的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現從名參保人員中隨機抽取名作為樣本進行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應交納的保費如下表所示. 據統計,該公司每年為這一萬名參保人員支出的各種費用為一百萬元.

年齡

(單位:歲)

保費

(單位:元)

1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數時的最小值;

2)經調查,年齡在之間老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費為元,如果參保,保險公司補貼治療費.某老人年齡歲,若購買該項保險(中的).針對此疾病所支付的費用為元;若沒有購買該項保險,針對此疾病所支付的費用為.試比較的期望值大小,并判斷該老人購買此項保險是否劃算?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若,求的單調性和極值;

(Ⅱ)若函數至少有1個零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案