【題目】已知橢圓,點(diǎn),,分別為橢圓的左焦點(diǎn)、右頂點(diǎn)和下頂點(diǎn),的面積為,且橢圓的離心率為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn)為橢圓上一點(diǎn),直線與橢圓交于不同的兩點(diǎn),且(點(diǎn)為坐標(biāo)原點(diǎn)),求的值.

【答案】1;(2.

【解析】

1)根據(jù)橢圓的幾何性質(zhì)可知,又橢圓的離心率為,由此即可求出橢圓方程;

2)將直線方程與橢圓方程聯(lián)立,化簡(jiǎn)可得,由此得到韋達(dá)定理,再根據(jù),可由坐標(biāo)運(yùn)算求出點(diǎn)坐標(biāo),再將點(diǎn)坐標(biāo)帶入橢圓方程,建立關(guān)于的方程,解方程,即可求出結(jié)果.

1)設(shè),由題意可知,……

由橢圓的離心率為,即……

聯(lián)立 ,解得 ;

所以橢圓的標(biāo)準(zhǔn)方程

2)由題意,將直線方程與橢圓方程聯(lián)立

可得,

又直線與橢圓交于不同的兩點(diǎn),則

;

設(shè),

,

所以

設(shè),

,所以,

所以

又點(diǎn)為橢圓上一點(diǎn),所以,即

所以,

所以,即

可得,

可得,且滿足;

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直角三角形ABC的三個(gè)頂點(diǎn)都在橢圓上,其中A0,1)為直角頂點(diǎn).若該三角形的面積的最大值為,則實(shí)數(shù)a的值為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020122日,國(guó)新辦發(fā)布消息:新型冠狀病毒來(lái)源于武漢一家海鮮市場(chǎng)非法銷售的野生動(dòng).專家通過(guò)全基因組比對(duì)發(fā)現(xiàn)此病毒與2003年的非典冠狀病毒以及此后的中東呼吸綜合征冠狀病毒,分別達(dá)到70%40%的序列相似性.這種新型冠狀病毒對(duì)人們的健康生命帶來(lái)了嚴(yán)重威脅因此,某生物疫苗研究所加緊對(duì)新型冠狀病毒疫苗進(jìn)行實(shí)驗(yàn),并將某一型號(hào)疫苗用在動(dòng)物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:

未感染病毒

感染病毒

總計(jì)

未注射疫苗

20

注射疫苗

30

總計(jì)

50

50

100

現(xiàn)從所有試驗(yàn)小白鼠中任取一只,取到“注射疫苗”小白鼠的概率為.

1)求列聯(lián)表中的數(shù)據(jù),,,的值;

2)能否有99.9%把握認(rèn)為注射此種疫苗對(duì)預(yù)防新型冠狀病毒有效?

附:.

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線過(guò)橢圓的右焦點(diǎn),且交橢圓于A,B兩點(diǎn),線段AB的中點(diǎn)是,

1)求橢圓的方程;

2)過(guò)原點(diǎn)的直線l與線段AB相交(不含端點(diǎn))且交橢圓于CD兩點(diǎn),求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),令,其中是函數(shù)的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時(shí),求的極值;

(Ⅱ)當(dāng)時(shí),若存在,使得恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為拋物線上的一點(diǎn),,為拋物線上異于點(diǎn)的兩點(diǎn),且直線的斜率與直線的斜率互為相反數(shù).

1)求直線的斜率;

2)設(shè)直線過(guò)點(diǎn)并交拋物線于,兩點(diǎn),且,直線軸交于點(diǎn),試探究的夾角是否為定值,若是則求出定值,若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的動(dòng)直線ly軸交于點(diǎn),過(guò)點(diǎn)T且垂直于l的直線與直線相交于點(diǎn)M.

1)求M的軌跡方程;

2)設(shè)M位于第一象限,以AM為直徑的圓y軸相交于點(diǎn)N,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,ADCD,ABCD,AB3,AD4,AE5,

1)證明:DF∥平面BCE

2)求A到平面BEDF的距離,并求四棱錐ABEDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)

查看答案和解析>>

同步練習(xí)冊(cè)答案