5.下列幾何圖形中,可能不是平面圖形的是(  )
A.梯形B.菱形C.平行四邊形D.四邊形

分析 根據(jù)有一組對邊平行的四邊形,即可判斷它是平面圖形,判斷即可.

解答 解:對于A,梯形是一組對邊平行且不等的四邊形,是平面圖形;
對于B,菱形是兩組對邊平行且相等的四邊形,是平面圖形;
對于C,平行四邊形是兩組對邊分別平行的四邊形,是平面圖形;
對于D,四邊形可能是平面圖形,也可能是立體圖形.
故選:D.

點(diǎn)評 本題考查了判斷幾何圖形是否為平面圖形的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在△ABC中,已知AB=3,AC=6,BC=7,AD是∠BAC平分線.
(1)求證:DC=2BD;
(2)求$\overrightarrow{AB}$$•\overrightarrow{DC}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列雙曲線中,焦點(diǎn)在y軸上且漸近線方程為y=±$\frac{1}{2}$x的是( 。
A.${x^2}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-{y^2}=1$C.$\frac{y^2}{4}-{x^2}=1$D.${y^2}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)是奇函數(shù)的是( 。
A.y=xB.y=2x2-3C.y=x+1D.y=x2,x∈[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$a_1^2+b_1^2≠0$,$a_2^2+b_2^2≠0$,則“$|{\begin{array}{l}{a_1}&{b_1}\\{{a_2}}&{b_2}\end{array}}|≠0$”是“直線a1x+b1y+c1=0與直線a2x+b2y+c2=0”平行的( 。l件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知圓的極坐標(biāo)方程為ρ=2cosθ-2sinθ,則圓的半徑為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某四棱錐的三視圖如圖所示,則該四棱錐的表面積為( 。
A.$8+4\sqrt{2}$B.$6+\sqrt{2}+2\sqrt{3}$C.$6+4\sqrt{2}$D.$6+2\sqrt{2}+2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓C的中心在坐標(biāo)原點(diǎn),長軸在x軸上,$c=\frac{{\sqrt{3}}}{2}a$,且C上一點(diǎn)到兩焦點(diǎn)的距離之和為12,則橢圓C的方程為$\frac{x^2}{36}+\frac{y^2}{9}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知具有相關(guān)關(guān)系的兩個變量x,y之間的幾組數(shù)據(jù)如下表所示:
x246810
y3671012
(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并估計當(dāng)x=20時,y的值;
(3)將表格中的數(shù)據(jù)看作五個點(diǎn)的坐標(biāo),則從這五個點(diǎn)中隨機(jī)抽取2個點(diǎn),求這兩個點(diǎn)都在直線2x-y-4=0的右下方的概率.
參考公式:$\widehat$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$,$\widehat{a}$=$\widehat{y}$-$\widehat$x.

查看答案和解析>>

同步練習(xí)冊答案