7.已知集合P={x|1<x≤2},Q={x|x2+x-2≤0},那么P∩Q等于( 。
A.B.{1}C.{x|-2≤x≤2}D.{x|1<x≤2}

分析 根據(jù)題意,Q為方程x2+x-6≤0的解集,由一元二次不等式的解法可得Q,由交集的運算可得答案.

解答 解:根據(jù)題意,結合一元二次不等式的解法可得,
Q={x∈R|x2+x-2≤0}={x|-2≤x≤1},
而P={x|1<x≤2},
又交集的意義,可得P∩Q=∅
故選:A.

點評 本題考查集合的交集運算,注意本題中P與Q的元素的范圍的不同.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知α是第二象限角,且|α+2|≤4.則α的集合是(-$\frac{3π}{2}$,$-\frac{π}{2}$)∪($\frac{π}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,在正方體ABCD-A1B1C1D1中,O,E分別為B1D,AB的中點.
(1)求證:OE∥平面BCC1B1;
(2)求證:OE⊥面B1DC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若集合A={x|y=$\frac{1}{\sqrt{|x|-1}}$,x∈R},B={y|y=2x2,x∈R},則(∁UA)∩B=( 。
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知長方體的長、寬、高分別為2cm,$\sqrt{3}$cm,$\sqrt{2}$cm,則該長方體的外接球的半徑是$\frac{3}{2}$cm.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)f(x),g(x)分別為R上的奇函數(shù)、偶函數(shù),且滿足f(x)-g(x)=ex則三個數(shù)f(2),f(3),g(0)的大小關系為g(0)<f(2)<f(3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的首項a1=1,前n項和Sn滿足Sn=$\frac{{n}^{2}}{2n-1}$an
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)將數(shù)列{an}的項按上小下大,左小右大的原則排列成一個如圖所示的三角形數(shù)陣,那么2015是否在該數(shù)陣中,若在,排在了第幾行第幾列?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知集合A滿足條件{1,2}⊆A?{1,2,3,4,5},則集合A的個數(shù)有( 。
A.8B.7C.4D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.羅源濱海新城建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下工程只需建兩端橋墩之間的橋面和橋墩,經(jīng)預測,一個橋墩的工程費用為32萬元,距離為x米的相鄰兩墩之間的橋面工程費用為(2+$\sqrt{x}$)x萬元.假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為y萬元.
(1)試寫出y關于x的函數(shù)關系式;
(2)當m=96米時,需新建多少個橋墩才能使余下工程的費用y最。

查看答案和解析>>

同步練習冊答案