【題目】如圖,已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,右焦點(diǎn)為,點(diǎn)分別是該橢圓的上、下頂點(diǎn),點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn)(與軸交點(diǎn)除外),直線交橢圓于另一點(diǎn),記直線, 的斜率分別為
(1)當(dāng)直線過(guò)點(diǎn)時(shí),求的值;
(2)求的最小值.
【答案】(1) ;(2).
【解析】試題分析:(1)利用橢圓的標(biāo)準(zhǔn)方程得到基本量,寫(xiě)出點(diǎn)的坐標(biāo),寫(xiě)出直線的方程為,即,求出P,聯(lián)立直線與橢圓求出M,計(jì)算向量的數(shù)量積;(2)設(shè),且,則直線的斜率為 聯(lián)立直線與橢圓的方程,求出M的坐標(biāo),從而,然后利用均值不等式即可求出.
試題解析:
(1)由橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍得
由題意,焦點(diǎn),當(dāng)直線過(guò)點(diǎn)時(shí),則直線的方程為,即,令得,則
聯(lián)立,解得,或(舍),即
因?yàn)?/span>
所以
(2)設(shè),且,則直線的斜率為
則直線的方程為
聯(lián)立,化簡(jiǎn)得,解得,
所以,
則
所以的最小值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計(jì)成績(jī)后,得到如下的列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
Ⅰ.請(qǐng)完成上面的列聯(lián)表;
Ⅱ.根據(jù)列聯(lián)表的數(shù)據(jù),是否有的把握認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.
參考公式與臨界值表:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)點(diǎn)的坐標(biāo)分別為,直線相交于點(diǎn),且它們的斜率之積為.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為,點(diǎn)是軌跡為上不同于的兩點(diǎn),且滿足,求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為研究冬季晝夜溫差大小對(duì)某反季節(jié)大豆新品種發(fā)芽率的影響,某農(nóng)科所記錄了5組晝夜溫差與100顆種子發(fā)芽數(shù),得到如下資料:
組號(hào) | 1 | 2 | 3 | 4 | 5 |
溫差() | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)(顆) | 23 | 25 | 30 | 26 | 16 |
該所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求出線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是第1組與第5組的兩組數(shù)據(jù),請(qǐng)根據(jù)第2組至第4組的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?
(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】A在直角坐標(biāo)系中,曲線的參數(shù)方程為,( 為參數(shù)),直線的方程為以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和直線的極坐標(biāo)方程;
(2)若直線與曲線交于兩點(diǎn),求
已知不等式的解集為.
(1)求的值;
(2)若,求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè),是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍.
(3)設(shè)函數(shù)有兩個(gè)極值點(diǎn),且,若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市2010年至2016年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格(單位:千元/平米)的統(tǒng)計(jì)數(shù)據(jù)如下表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào)x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷(xiāo)售價(jià)格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求關(guān)于的線性回歸方程;
(2)利用(1)中的回歸方程,分析2010年至2016年該市新開(kāi)樓盤(pán)平均銷(xiāo)售價(jià)格的變化情況,并預(yù)測(cè)該市2018年新開(kāi)樓盤(pán)的平均銷(xiāo)售價(jià)格.
附:參考數(shù)據(jù)及公式: , , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).
(1)討論的單調(diào)性;
(2)若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明: 為函數(shù)的導(dǎo)函數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在上有最大值1和最小值0,設(shè).
(1)求的值;
(2)若不等式在上有解,求實(shí)數(shù)的取值范圍;
(3)若方程 (為自然對(duì)數(shù)的底數(shù))有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com