6.同雙曲線y=$\frac{1}{x}$(x>0),直線x=1,x=4及x軸所圍成的平面圖形的面積S=2ln2.

分析 首先利用定積分表示出封閉圖形的面積,然后計(jì)算定積分.

解答 解:同雙曲線y=$\frac{1}{x}$(x>0),直線x=1,x=4及x軸所圍成的平面圖形的面積S=${∫}_{1}^{4}\frac{1}{x}dx=lnx{|}_{1}^{4}$=ln4-ln1=2ln2;
故答案為:2ln2.

點(diǎn)評 本題考查了定積分的幾何意義與面積的關(guān)系;關(guān)鍵是正確利用定積分表示面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知數(shù)列{an}的首項(xiàng)a1=m,其前n項(xiàng)和為Sn,且滿足Sn+Sn+1=3n2+2n,若對?n∈N+,an<an+1恒成立,則m的取值范圍是(-2,$\frac{5}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為了整頓食品的安全衛(wèi)生,食品監(jiān)督部門對某食品廠生產(chǎn)甲、乙兩種食品進(jìn)行了檢測調(diào)研,檢測某種有害微量元素的含量,隨機(jī)在兩種食品中各抽取了10個(gè)批次的食品,每個(gè)批次各隨機(jī)地抽取了一件,下表是測量數(shù)據(jù)的莖葉圖(單位:毫克).

規(guī)定:當(dāng)食品中的有害微量元素的含量在[0,10]時(shí)為一等品,在[10,20]為二等品,20以上為劣質(zhì)品.
(1)用分層抽樣的方法在兩組數(shù)據(jù)中各抽取5個(gè)數(shù)據(jù),再分別從這5個(gè)數(shù)據(jù)中各選取2個(gè),求甲的一等品數(shù)與乙的一等品數(shù)相等的概率;
(2)每生產(chǎn)一件一等品盈利50元,二等品盈利20元,劣質(zhì)品虧損20元,根據(jù)上表統(tǒng)計(jì)得到甲、乙兩種食品為一等品、二等品、劣質(zhì)品的頻率,分別估計(jì)這兩種食品為一等品、二等品、劣質(zhì)品的概率,若分別從甲、乙食品中各抽取1件,設(shè)這兩件食品給該廠帶來的盈利為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.方程2sinπx-lgx2=0實(shí)數(shù)解的個(gè)數(shù)是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax-lnx,F(xiàn)(x)=ex+ax,其中x>0,a<0.
(1)若f(x)和F(x)在區(qū)間(0,ln3)上具有時(shí)間的單調(diào)性,求實(shí)數(shù)a的取值范圍;
(2)若$a∈({-∞,-\frac{1}{e^2}}]$,且函數(shù)g(x)=xeax-1-2ax+f(x)的最小值為φ(a),求φ(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{\frac{1}{x},x<0}\end{array}\right.$,g(x)=-f(-x),則函數(shù)g(x)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.隨著經(jīng)濟(jì)模式的改變,微商和電商已成為當(dāng)今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個(gè)銷售季度內(nèi),每售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損.3萬元.根據(jù)往年的銷售經(jīng)驗(yàn),得到一個(gè)銷售季度內(nèi)市場需求量的頻率分布直方圖如右圖所示.已知電商為下一個(gè)銷售季度籌備了130噸該商品.現(xiàn)以x(單位:噸,100≤x≤150)表示下一個(gè)銷售季度的市場需求量,T(單位:萬元)表示該電商下一個(gè)銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.
(Ⅰ)將T表示為x的函數(shù),求出該函數(shù)表達(dá)式;
(Ⅱ)根據(jù)直方圖估計(jì)利潤T不少于57萬元的概率;
(Ⅲ)根據(jù)頻率分布直方圖,估計(jì)一個(gè)銷售季度內(nèi)市場需求量x的平均數(shù)與中位數(shù)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,滿足:2cosC(acosB+bcosA)=c.
(1)求C;
(2)若a=2,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知A(2,2),B(a,b),對于圓x2+y2=4,上的任意一點(diǎn)P都有$\frac{|PA|}{|PB|}$=$\sqrt{2}$,則點(diǎn)B的坐標(biāo)為(1,1).

查看答案和解析>>

同步練習(xí)冊答案