4.已知函數(shù)f(x)=(4a-3)x+b-2a,x∈[0,1],若f(x)≤2恒成立.
(1)當a=$\frac{1}{2}$時,求實數(shù)b的取值范圍;
(2)畫出點P(a,b)表示的平面區(qū)域,并求z=a+b的最大值.

分析 (1)問題轉化為b≤x+3在x∈[0,1]恒成立,求出b的范圍即可;(2)利用函數(shù)的單調(diào)性建立a,b的關系,通過線性規(guī)劃的知識解決最值問題.

解答 解:(1)a=$\frac{1}{2}$時,f(x)=-x+b-1≤2,x∈[0,1],
∴b≤x+3在x∈[0,1]恒成立,
∴b≤3;
(2)根據(jù)題意,$\left\{\begin{array}{l}{f(0)=b-2a≤2}\\{f(1)=b+2a-3≤2}\end{array}\right.$,
如圖示:

由$\left\{\begin{array}{l}{2a-b+2=0}\\{2a+b-5=0}\end{array}\right.$,解得A($\frac{3}{4}$,$\frac{7}{2}$),
由線性規(guī)劃知識知,
當a=$\frac{3}{4}$,b=$\frac{7}{2}$時,z達到最大值$\frac{17}{4}$,
∴z=a+b的最大值為:$\frac{17}{4}$.

點評 本題考查了以函數(shù)恒成立為載體,利用線性規(guī)劃知識求最值的問題,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.已知直線l的方程為2x+(1+m)y+2m=0,m∈R,點P的坐標為(-1,0).
(1)求證:直線l恒過定點,并求出定點坐標;
(2)求點P到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.過點M(-2,4)作圓C:(x-2)2+(y-1)2=25的切線l,又直線l1:ax+3y+2a=0與直線l平行,則直線l與l1之間的距離為2.4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若兩個正實數(shù)x,y滿足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,則實數(shù)m的取值范圍是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.a(chǎn)rctan$\sqrt{3}$-arcsin(-$\frac{1}{2}$)+arccos0的值為( 。
A.$\frac{5π}{6}$B.πC.0D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知直線l經(jīng)過直線3x+4y-2=0與直線2x+y+2=0的交點P,且垂直于直線x+2y-1=0.
(1)求直線l的方程;
(2)若一束光線自點A(2,1)射向直線l,反射光線恰好過原點,求反射光線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.作出函數(shù)y=sin(x-$\frac{π}{6}$)+1在[$\frac{π}{6}$,$\frac{13}{6}$π]的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.某公司采用眾籌的方式募集資金,開發(fā)一種創(chuàng)新科技產(chǎn)品,為了解募集的資金x(單位:萬元)與收益率y之間的關系,對近6個季度眾籌到的資金xi和收益率yi的數(shù)據(jù)進行統(tǒng)計,得到數(shù)據(jù)表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通過繪制并觀察散點圖的分布特征后,分別選用y=a+bx與y=c+dlgx作為眾籌到的資金x與收益率y的擬合方式,再經(jīng)過計算,得到這兩種擬合方式的回歸方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的統(tǒng)計數(shù)值,試運用相關指數(shù)比較以上兩回歸方程的擬合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根據(jù)以上擬合效果較好的回歸方程,解答:
(i)預測眾籌資金為5萬元時的收益率.(精確到0.0001)
(ii)若眾籌資金服從正態(tài)分布N(μ,σ2),試求收益率在75.75%以上的概率.
附:(1)相關指數(shù)R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若隨機變量X~N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)參考數(shù)據(jù):lg2=0.3010,lg3=0.4771.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.(普通班題)已知sinα=$\frac{3}{5}$,且$\frac{π}{2}$<α<π.
(1)求cos($\frac{π}{4}$-α)的值;
(2)求sin($\frac{2π}{3}$+2α)的值.

查看答案和解析>>

同步練習冊答案