14.(1)已知f(x)是偶函數(shù),x≥0時(shí),f(x)=-2x2+4x,求x<0時(shí)f(x)的解析式.
(2)已知函數(shù)f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值為h(t),寫出h(t)的表達(dá)式.

分析 (1)利用函數(shù)的奇偶性,整合求解函數(shù)的解析式即可.
(2)求出函數(shù)的對(duì)稱軸,通過①當(dāng)t≤-$\frac{5}{2}$時(shí);②當(dāng)t>-$\frac{3}{2}$時(shí);③當(dāng)t≤-$\frac{3}{2}$<t+1,分別求解函數(shù)的最小值即可.

解答 (1)解:當(dāng)x<0時(shí),-x>0,又由于f(x)是偶函數(shù),則f(x)=f(-x),
所以,當(dāng)x<0時(shí),f(x)=f(-x)=-2(-x)2+4(-x)=-2x2-4x.
(2)解:$f(x)={(x+\frac{3}{2})^2}-\frac{29}{4}$,所以對(duì)稱軸為$x=-\frac{3}{2}$固定,而區(qū)間[t,t+1]是變動(dòng)的,因此有
①當(dāng)t+1≤-$\frac{3}{2}$,即t≤-$\frac{5}{2}$時(shí),h(t)=f(t+1)=(t+1)2+3(t+1)-5=t2+5t-1;
②當(dāng)t>-$\frac{3}{2}$時(shí),h(t)=f(t)=t2+3t-5;
③當(dāng)t≤-$\frac{3}{2}$<t+1,即-$\frac{5}{2}$<t≤-$\frac{3}{2}$時(shí),$h(t)=f(-\frac{3}{2})=-\frac{29}{4}$.
綜上可知h(t)=$\left\{\begin{array}{l}{{t}^{2}+5t-1,(t≤-\frac{5}{2})}\\{-\frac{49}{2},(-\frac{5}{2}<t≤-\frac{3}{2})}\\{{t}^{2}+3t-5,(t>-\frac{3}{2})}\end{array}\right.$.

點(diǎn)評(píng) 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,函數(shù)的最值以及函數(shù)的解析式的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.等比數(shù)列{an}的各項(xiàng)都是正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足${a_4}=4{a_3}^2$,數(shù)列{bn}的前n項(xiàng)和為${S_n}=\frac{{(n+1){b_n}}}{2}$,n∈N*,且b1=1
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)設(shè)${c_n}=\frac{{{b_{2n+5}}}}{{{b_{2n+1}}{b_{2n+3}}}}{a_n}$,n∈N*,{Cn}前n項(xiàng)和為$\sum_{k=1}^n{c_k}$,求證:$\sum_{k=1}^n{{c_k}<\frac{1}{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線kx-y+k-1=0與圓x2+y2+2ax+2y+2a2=0恒有公共點(diǎn),則實(shí)數(shù)a的取值范圍是[0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如果(1+i)2n=2ni(n∈N*),那么( 。
A.n=4k(k∈N*)B.n=4k+1(k∈N*)C.n=4k+2(k∈N*)D.n=4k+3(k∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x,y滿足$\left\{\begin{array}{l}x+y≥1\\ x-2y≥-2\\ 3x-2y≤3\end{array}\right.$,則x2+y2的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.假設(shè)佛羅里達(dá)州某鎮(zhèn)有居民2400人,其中白人有1200人,黑人800人,華人200人,其他有色人種200人,為了調(diào)查奧馬巴政府在該鎮(zhèn)的支持率,現(xiàn)從中選取一個(gè)容量為120人的樣本,按分層抽樣,白人、黑人、華人、其他有色人種分別抽取的人數(shù)(  )
A.60,40,10,10B.65,35,10,10C.60,30,15,15D.55,35,15,15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=-x2+mx-1(m∈R).
(1)試求f(x)在區(qū)間[$\frac{1}{2}$,1]上的最大值;
(2)若函數(shù)|f(x)|在區(qū)間($\frac{1}{2}$,+∞)上單調(diào)遞增,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)y=ax+2014+2013(a>0且a≠1)的圖象恒過定點(diǎn)(-2014,2014).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β為非零常數(shù),若f(2006)=-1,則f(2007)=( 。
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案