19.假設(shè)佛羅里達(dá)州某鎮(zhèn)有居民2400人,其中白人有1200人,黑人800人,華人200人,其他有色人種200人,為了調(diào)查奧馬巴政府在該鎮(zhèn)的支持率,現(xiàn)從中選取一個(gè)容量為120人的樣本,按分層抽樣,白人、黑人、華人、其他有色人種分別抽取的人數(shù)( 。
A.60,40,10,10B.65,35,10,10C.60,30,15,15D.55,35,15,15

分析 先計(jì)算比例,再根據(jù)分層比求應(yīng)抽取的人數(shù).

解答 解:白人有1200人,黑人800人,華人200人,其他有色人種200人,則其比例1200:800:200:200=6:4:1:1,
抽取一個(gè)容量為120人的樣本,分層抽樣,白人、黑人、華人、其他有色人種分別抽取的人數(shù)120×$\frac{6}{12}$=60人,120×$\frac{4}{12}$=40人,120×$\frac{1}{12}$=10人,120×$\frac{1}{12}$=10人.
故選:A.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的分層抽樣,屬基本題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.命題?x∈R,ex-x-1≥0的否定是( 。
A.?x∈R,ex-x-1≤0B.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≥0
C.?x0∈R,e${\;}^{{x}_{0}}$-x0-1≤0D.?x0∈R,e${\;}^{{x}_{0}}$-x0-1<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=x3+mx2+nx-2的圖象在點(diǎn)(-1,f(-1))處的切線方程為9x-y+3=0.
(1)求函數(shù)y=f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)f(x)(x∈[0,3])的值域?yàn)锳,函數(shù)f(x)(x∈[a,a+$\frac{3}{2}$])的值域?yàn)锽,當(dāng)A⊆B時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知函數(shù)y=f(x)是定義在[-5,0)∪(0,5]上的偶函數(shù),且當(dāng)x∈(0,5]時(shí),f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x(0<x<2)}\\{-{x}^{2}+8x-15(2≤x≤5)}\end{array}\right.$若函g(x)=f(x)-kx+2有三個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是(-8+2$\sqrt{13}$,-$\frac{2}{5}$]∪[$\frac{2}{5}$,8-2$\sqrt{13}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)已知f(x)是偶函數(shù),x≥0時(shí),f(x)=-2x2+4x,求x<0時(shí)f(x)的解析式.
(2)已知函數(shù)f(x)=x2+3x-5,x∈[t,t+1],若f(x)的最小值為h(t),寫出h(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).
(1)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.
(2)若f(x)在[1,2]單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓P:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點(diǎn)為M,上頂點(diǎn)為N,直線MN的斜率為$\frac{{\sqrt{3}}}{2}$,坐標(biāo)原點(diǎn)O到直線MN的距離為$\frac{{2\sqrt{21}}}{7}$.
(Ⅰ)求橢圓P的方程;
(Ⅱ)已知正方形ABCD的頂點(diǎn)A、C在橢圓P上,頂點(diǎn)B、D在直線7x-7y+1=0上,求該正方形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=x2-3x+2的零點(diǎn)的個(gè)數(shù)為( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.三點(diǎn)A(1,-1),B(1,4),C(4,-2).求△ABC的外接圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案