分析 由D1D⊥平面ABCD,得∠D1BD是對(duì)角線D1B與底而ABCD所成角,由此能求出對(duì)角線D1B與底而ABCD所成角的大。
解答 解:∵長(zhǎng)方體ABCD-A1B1C1D1中,高DD1=4cm,.底面是邊長(zhǎng)為3cm的正方形,
∴BD=$\sqrt{9+9}$=3$\sqrt{2}$,
∵D1D⊥平面ABCD,
∴∠D1BD是對(duì)角線D1B與底而ABCD所成角,
∵tan∠D1BD=$\frac{D{D}_{1}}{BD}$=$\frac{4}{3\sqrt{2}}$=$\frac{2\sqrt{2}}{3}$,
∴∠D1BD=$arctan\frac{2\sqrt{2}}{3}$.
∴對(duì)角線D1B與底而ABCD所成角的大小為$arctan\frac{2\sqrt{2}}{3}$.
點(diǎn)評(píng) 本題考查線面角的大小的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(3,+∞) | B. | (-1,3) | C. | (-∞,-1]∪[3,+∞) | D. | [-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2kπ+$\frac{π}{2}$(k∈Z) | B. | kπ+$\frac{π}{2}$(k∈Z) | C. | $\frac{π}{2}$ | D. | π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com