17.下列函數(shù)中,既是奇函數(shù),又在(1,+∞)上遞增的是( 。
A.y=x2B.y=x2-2xC.y=sinxD.y=x3

分析 逐項判斷各個選項,利用奇函數(shù)的定義和單調(diào)性的定義即可求解.

解答 解:∵y=x2是偶函數(shù),故A錯誤;
∵函數(shù)y=x2-2x是非奇非偶函數(shù),故B錯誤;
函數(shù)y=sinx在R上是奇函數(shù),但在(1,+∞)上無單調(diào)性,故C錯誤;
函數(shù)y=x3在R是奇函數(shù)且為增函數(shù),所以y=x3在(1,+∞)上是增函數(shù),故D正確.
故選:D.

點評 本題考查基本初等函數(shù)和正弦函數(shù)的簡單性質(zhì),正確掌握它們的性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知圓C:x2+y2=1,過第一象限內(nèi)一點P(a,b)作圓C的兩條切線,且點分別為A、B,若∠APB=60°,O為坐標原點,則OP的長為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=x2的定義域是x∈{-2,-1,0,1,2},則該函數(shù)的值域為{0,1,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.記復(fù)數(shù)z的共軛復(fù)數(shù)為$\overline{z}$,若$\overline{z}$(1-i)=2i,則復(fù)數(shù)z的虛部為(  )
A.iB.1C.-iD.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow a$=(x-1,2),$\overrightarrow b$=(2,1),則$\overrightarrow a$∥$\overrightarrow b$的充要條件是( 。
A.$x=-\frac{1}{2}$B.x=-1C.x=5D.x=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列不等式組中,能表示圖中陰影部分的是(  )
A.$\left\{\begin{array}{l}{y≥1}\\{2x-y+2≥0}\end{array}\right.$B.$\left\{\begin{array}{l}{y≥-1}\\{2x-y+2≤0}\end{array}\right.$
C.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≤0}\end{array}\right.$D.$\left\{\begin{array}{l}{x≤0}\\{y≥-1}\\{2x-y+2≥0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面有四個命題:
①函數(shù)y=tan x在每一個周期內(nèi)都是增函數(shù).
②函數(shù)y=sin(2x+$\frac{5π}{4}$)的圖象關(guān)于直線x=$\frac{π}{8}$對稱;
③函數(shù)y=tanx的對稱中心(kπ,0),k∈Z.
④函數(shù)y=sin(2x-$\frac{π}{2}$)是偶函數(shù).
其中正確結(jié)論個數(shù)(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<$\frac{1}{2}$,則不等式f(x2)<$\frac{{x}^{2}}{2}$+$\frac{1}{2}$的解集為(  )
A.(-$\frac{1}{2}$,$\frac{1}{2}$)B.(-∞,-1)∪(1,+∞)C.(-1,1)D.(-∞,-$\frac{1}{2}$)∪($\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.(1)若f(x+1)=x2-2x+3,求f(x)的解析式.
(2)若f(x)為定義在R上的奇函數(shù),當x<0時,f(x)=2x+1,求x>0時f(x)的解析式.

查看答案和解析>>

同步練習(xí)冊答案