分析 通過求導(dǎo)判斷函數(shù)的單調(diào)性,結(jié)合極小值的概念可得結(jié)論.
解答 解:因為f(x)=x2e-x,x∈R
所以f′(x)=2xe-x-x2e-x=(2-x)xe-x,
令f′(x)=0,解得x=0或x=2,
因為當(dāng)x<0或x>2時f′(x)<0,當(dāng)0<x<2時f′(x)>0,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(0,2),單調(diào)遞減區(qū)間為(-∞,0),(2,+∞),
所以當(dāng)x=0時取得極小值f(0)=0,
故答案為:0.
點評 本題考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查運算求解能力,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-3y=0 | B. | x+3y=0 | C. | 3x-y=0 | D. | 3x+y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{2}$,$\frac{3π}{4}$] | B. | [$\frac{π}{4}$,$\frac{3π}{4}$] | C. | [$\frac{3π}{4}$,π) | D. | [0,$\frac{π}{2}$)∪[$\frac{3π}{4}$,π) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com