15.3男3女共6名同學(xué)從左至右排成一排合影,要求左端排男同學(xué),右端排女同學(xué),且女同學(xué)至多有2人排在一起,則不同的排法種數(shù)為180.

分析 根據(jù)題意,假設(shè)從左到右有6個位置,分2步進(jìn)行分析:①、在3個男生中任選1人,安排在左端的1號位置,在女生中任選1人,安排在右端的6號位置,②、分析中間的4個位置,對5號位置分為男生和女生2種情況討論,分別求出每一步的情況數(shù)目,由分步計數(shù)原理計算可得答案.

解答 解:根據(jù)題意,假設(shè)從左到右有6個位置,分2步進(jìn)行分析:
①、要求左端排男同學(xué),右端排女同學(xué),
在3個男生中任選1人,安排在左端的1號位置,在女生中任選1人,安排在右端的6號位置,
有C31×C31=9種選法;
②、對5號位置分2種情況討論:
若5號位置為女生,有2種情況,則4號位置必須為男生,有2種情況,
將剩余的2人全排列,安排在2、3號位置,有A22=2種情況,
此時有2×2×2=8種情況,
若5號位置為男生,有2種情況,
將剩余的3人全排列,安排在2、3、4號位置,有A33=6種情況,
此時有2×6=12種情況,
則剩余的4個位置有8+12=20種情況,
故有9×20=180種不同的排法;
故答案為:180.

點評 本題考查排列、組合的實際應(yīng)用,涉及分步、分類計數(shù)原理的應(yīng)用,注意要優(yōu)先分析受到限制的元素.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知0<x<2π,且角x的終邊和它的7倍角的終邊相同,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=|x-a|+|x-1|+2a.
(1)若f(2)≥0,求實數(shù)a的取值范圍;
(2)若存在x∈R使得不等式f(x)<0成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=-$\frac{tx}{2lnx}$,g(x)=t(1-$\frac{{x}^{2}}{{e}^{tx}}$),其中t∈R且t≠0,e為自然對數(shù)的底數(shù).
(1)當(dāng)t>0時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(2)是否存在t<0,對?x1∈(1,+∞),?x2∈(-∞,0),都有f(x1)>g(x2)?若存在,求出t的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=lnx-x2與g(x)=x2$-\frac{2}{x}$-m的圖象上存在關(guān)于原點對稱的點,則實數(shù)m的取值范圍是(  )
A.(-∞,1-ln2]B.[0,1-ln2)C.(1-ln2,1+ln2]D.[1+ln2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,($\overrightarrow{a}$+2$\overrightarrow$)⊥$\overrightarrow{a}$,(2$\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$,則|$\overrightarrow$|=( 。
A.2B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在四棱錐P-ABCD中,CD⊥平面PAD,AB∥CD,CD=AD=4AB=4,且AC⊥PA,M為線段CP上一點.
(1)求證:平面ACD⊥平面PAM;
(2)若PM=$\frac{1}{4}$PC且AP=$\frac{1}{2}$AD,求證:MB∥平面PAD,并求四棱錐M-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若△ABC的面積S=$\frac{\sqrt{4}}{3}$(b2+c2-a2),則A=$arctan\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=1+\sqrt{7}cosθ}\\{y=\sqrt{7}sinθ}\end{array}\right.$(θ為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.

查看答案和解析>>

同步練習(xí)冊答案