解關(guān)于x的不等式:-
1
2
log
1
9
x
1
2
考點(diǎn):指、對數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:要解的不等式等價(jià)于log
1
9
3
log
1
9
x
log
1
9
1
3
,再利用對數(shù)的運(yùn)算性質(zhì)、對數(shù)函數(shù)的單調(diào)性,求得x的范圍.
解答: 解:-
1
2
log
1
9
x
1
2
,等價(jià)于log
1
9
3
log
1
9
x
log
1
9
1
3
,等價(jià)于
1
3
≤x≤3,
故不等式的解集為[
1
3
,3].
點(diǎn)評(píng):本題主要考查對數(shù)不等式的解法,對數(shù)的運(yùn)算性質(zhì)、對數(shù)函數(shù)的單調(diào)性,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=
3
,b=1,B=30°,則其面積等于( 。
A、
3
2
3
B、
3
2
C、
3
2
3
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足
x≥0
y≤x
2x+y+k≤0.
,若z=x+3y的最大值為12,試求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)抽取某中學(xué)高一級(jí)學(xué)生的一次數(shù)學(xué)測試成績得到一樣本,其分組區(qū)間和頻數(shù)是:[50,60),2;[60,70);7;[70,80),10;[80,90),x;[90,100],2.其頻率分布直方圖受到破壞,可見部分如圖所示,據(jù)此解答如下問題:
(1)求樣本的人數(shù)及x的值;
(2)估計(jì)樣本的眾數(shù),并計(jì)算頻率分布直方圖中[80,90)的矩形的高
(3)從成績不低于80分的樣本中隨機(jī)選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣M=
a1
1b
,若向量
-2
1
在矩陣M的交換下得到向量
1
2

(Ⅰ)求矩陣M;
(Ⅱ)矩陣N=
10
21
,求直線x+y+1=0在矩陣NM的對應(yīng)變換作用下得到的曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c,直線l1:y=-t2+8t(其中0≤t≤2,t為常數(shù)),l2:x=2的圖象如圖所示.
(1)根據(jù)圖象求a、b、c的值;
(2)求陰影面積S關(guān)于t的函數(shù)S(t)的解析式;
(3)若g(x)=6lnx+m,問是否存在實(shí)數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有三個(gè)不同的交點(diǎn)?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,已知sinC+cosC=1-sin
C
2

(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求三角形三邊a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

公車私用、超編配車等現(xiàn)象一直飽受詬病,省機(jī)關(guān)事務(wù)管理局認(rèn)真貫徹落實(shí)黨中央、國務(wù)院有關(guān)公務(wù)用車配備使用管理辦法,積極推進(jìn)公務(wù)用車制度改革.某機(jī)關(guān)單位有車牌尾號(hào)為2的汽車A和尾號(hào)為6的汽車B,兩車分屬于兩個(gè)獨(dú)立業(yè)務(wù)部門.為配合用車制度對一段時(shí)間內(nèi)兩輛汽車的用車記錄進(jìn)行統(tǒng)計(jì),在非限行日,A車日出車頻率0.6,B車日出車頻率0.5,該地區(qū)汽車限行規(guī)定如下:
車尾號(hào)0和51和62和73和84和9
限行日星期一星期二星期三星期四星期五
現(xiàn)將汽車日出車頻率理解為日出車概率,且A,B兩車出車情況相互獨(dú)立.
(1)求該單位在星期一恰好出車一臺(tái)的概率;
(2)設(shè)X表示該單位在星期一與星期二兩天的出車臺(tái)數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx-
π
6
)+1(A>0,ω>0)的周期是π,最大值為3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案