4.已知$\overrightarrow a$=(tan(θ+$\frac{π}{12}$),1),$\overrightarrow b$=(1,-2),且$\overrightarrow a$⊥$\overrightarrow b$,則tan(2θ+$\frac{5π}{12}$)=$-\frac{1}{7}$.

分析 由題意可得tan(θ+$\frac{π}{12}$)×1-2=0,化簡(jiǎn)后可得:tan(θ+$\frac{π}{12}$)=2,由二倍角的正切函數(shù)公式可求tan(2θ+$\frac{π}{6}$)的值,利用特殊角的三角函數(shù)值及兩角和的正切函數(shù)公式即可計(jì)算得解.

解答 解:∵$\overrightarrow a$=(tan(θ+$\frac{π}{12}$),1),$\overrightarrow b$=(1,-2),且$\overrightarrow a$⊥$\overrightarrow b$,
∴tan(θ+$\frac{π}{12}$)×1-2=0,可得:tan(θ+$\frac{π}{12}$)=2,
∴tan(2θ+$\frac{π}{6}$)=$\frac{2tan(θ+\frac{π}{12})}{1-ta{n}^{2}(θ+\frac{π}{12})}$=-$\frac{4}{3}$,
∴tan(2θ+$\frac{5π}{12}$)=tan(2θ+$\frac{π}{6}$+$\frac{π}{4}$)=$\frac{tan(2θ+\frac{π}{6})+tan\frac{π}{4}}{1-tan(2θ+\frac{π}{6})tan\frac{π}{4}}$=$\frac{-\frac{4}{3}+1}{1-(-\frac{4}{3})×1}$=$-\frac{1}{7}$.
故答案為:$-\frac{1}{7}$.

點(diǎn)評(píng) 本題考查三角函數(shù)值得求解,涉及向量的垂直和數(shù)量積的關(guān)系,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.甲、乙兩市各五個(gè)鎮(zhèn)民政局在2016年2月14日當(dāng)天領(lǐng)取結(jié)婚證新人的對(duì)數(shù)如莖葉圖所示,已知甲市的數(shù)據(jù)的中位數(shù)為145,乙市的數(shù)據(jù)的平均數(shù)為145,則m+n=10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=2$\sqrt{3}$sinxsin($\frac{π}{2}$-x)+2cos2x+a的最大值為3.
(Ⅰ)求f(x)的對(duì)稱軸方程和a的值;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,過拋物線x2=4y的對(duì)稱軸上一點(diǎn)P(0,m)(m>0)作直線l1,l1與拋物線交于A,B兩點(diǎn).
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}$<0(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的取值范圍;
(Ⅱ)過點(diǎn)P且與l1垂直的直線l2與拋物線交于C,D兩點(diǎn),設(shè)AB,CD的中點(diǎn)分別為M,N,求證:直線MN必過定點(diǎn),并求出該定點(diǎn)坐標(biāo)(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知三棱錐的三視圖如圖所示,則它的外接球表面積為( 。
A.16πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n都有Sn=n2+$\frac{1}{2}$an
(1)證明:an+1+an=4n+2;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)f(n)=($1-\frac{1}{{a}_{1}}$)($1-\frac{1}{{a}_{2}}$)…($1-\frac{1}{{a}_{n}}$)<$\frac{2{a}^{2}-3}{2a\sqrt{2n+1}}$對(duì)于一切正整數(shù)n成立?若存在,求出a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知實(shí)數(shù)x,y滿足:$\left\{{\begin{array}{l}{x-2y+1≥0}\\{x<2}\\{x+y-1≥0}\end{array}}\right.$,z=2x-2y-1,則z的取值范圍是[-$\frac{5}{3}$,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合A={x∈Z|-$\frac{3}{2}$<x<3},B={0,1,2,3,4},則集合A∩B的子集個(gè)數(shù)為( 。
A.16B.8C.7D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知向量$\overrightarrow{a}$=(sinx,$\frac{3}{4}$),$\overrightarrow$=(cosx,-1).
(1)當(dāng)$\overrightarrow{a}$∥$\overrightarrow$時(shí),求cos2x-sin2x的值;
(2)設(shè)函數(shù)f(x)=2($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$,已知f($\frac{α}{2}$)=$\frac{3}{4}$,α∈($\frac{π}{2}$,π),求sinα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案