12.如圖,過(guò)拋物線x2=4y的對(duì)稱軸上一點(diǎn)P(0,m)(m>0)作直線l1,l1與拋物線交于A,B兩點(diǎn).
(Ⅰ)若$\overrightarrow{OA}•\overrightarrow{OB}$<0(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)m的取值范圍;
(Ⅱ)過(guò)點(diǎn)P且與l1垂直的直線l2與拋物線交于C,D兩點(diǎn),設(shè)AB,CD的中點(diǎn)分別為M,N,求證:直線MN必過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo)(用m表示).

分析 (I)設(shè)l1:y=kx+m,與拋物線方程聯(lián)立方程組消元,根據(jù)根與系數(shù)的關(guān)系計(jì)算x1x2,y1y2,則由$\overrightarrow{OA}•\overrightarrow{OB}$<0得x1x2+y1y2<0;
(II)由(I)中的方程組得出x1+x2,y1+y2,得出AB的中點(diǎn)M的坐標(biāo),同理得出CD的中點(diǎn)N的坐標(biāo),得出MN的直線方程,化為斜截式方程得出定點(diǎn)坐標(biāo).

解答 解:(I)設(shè)直線l1:y=kx+m,
聯(lián)立方程組$\left\{\begin{array}{l}{{x}^{2}=4y}\\{y=kx+m}\end{array}\right.$,消元得:x2-4kx-4m=0.
∵m>0,∴△=16k2+16m>0恒成立.
設(shè) A(x1,y1).B(x2,y2),則x1+x2=4k,x1x2=-4m.
∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=m2
∴$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=m2-4m<0.
又m>0,解得0<m<4.
(II)由(I)可得x1+x2=4k,y1+y2=k(x1+x2)+2m=4k2+2m,
∴M(2k,2k2+m),
同理可得N($-\frac{2}{k}$,$\frac{2}{{k}^{2}}+m$),
∴直線MN的方程為:$\frac{y-2{k}^{2}-m}{\frac{2}{{k}^{2}}-2{k}^{2}}=\frac{x-2k}{-\frac{2}{k}-2k}$,整理得:y=(k-$\frac{1}{k}$)x+m+2.
∴直線MN過(guò)定點(diǎn)(0,m+2).

點(diǎn)評(píng) 本題考查了直線與圓錐曲線的位置關(guān)系,根與系數(shù)的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)集合M={x|x2-$\frac{x}{2}$>0},N={x|lgx≤0},則M∩N=( 。
A.[0,1]B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1( a>b>0)的一個(gè)焦點(diǎn)(-3,0),離心率e=$\frac{\sqrt{3}}{2}$
(1)求橢圓C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為l的直線被橢圓C所截線段得中點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)向量$\overrightarrow{a}$=(cosα,-$\frac{\sqrt{2}}{2}$)的模為$\frac{\sqrt{3}}{2}$,則cos2α=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}{cos^2}$x-sinxcos(π-x),x∈R.
(Ⅰ)求f(x)的最小正周期及單調(diào)區(qū)間;
(Ⅱ)求f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{4}$]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若sinα=$\frac{3}{5}$且α是第二象限角,則tan(α-$\frac{π}{4}$)=-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知$\overrightarrow a$=(tan(θ+$\frac{π}{12}$),1),$\overrightarrow b$=(1,-2),且$\overrightarrow a$⊥$\overrightarrow b$,則tan(2θ+$\frac{5π}{12}$)=$-\frac{1}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,質(zhì)量指標(biāo)值越大表明質(zhì)量越好,且質(zhì)量指標(biāo)值大于17克時(shí),該產(chǎn)品為優(yōu)等品.現(xiàn)在為了解甲、乙兩廠產(chǎn)品的質(zhì)量,從兩廠生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取各10件樣品,測(cè)量樣品的質(zhì)量指標(biāo)值(單位:克)•如圖是測(cè)量數(shù)據(jù)的莖葉圖:
(1)試用上述樣本數(shù)據(jù)估計(jì)A、B兩廠生產(chǎn)的優(yōu)等品率
(2)從甲廠10件樣品中抽取2件,乙廠10件中抽取1件,若3件中優(yōu)等品的件數(shù)記為X,求X的分布列和數(shù)學(xué)期望;
(3)從甲廠的10件樣品中有放回的隨機(jī)抽取3件,也從乙廠的10件樣品中有放回的隨機(jī)抽取3件,求抽到的優(yōu)等品數(shù)甲廠恰比乙廠多1件的概率.(每次抽取一件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.梯形ABCD中,AB∥CD,AB=6,AD=DC=2,若$\overrightarrow{AD}$⊥$\overrightarrow{DC}$,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=-8.

查看答案和解析>>

同步練習(xí)冊(cè)答案